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Muddy Creek- tributary to Sun River in Central Montana

Muddy Creek: surveyed every 15.24 meters, total of 5456m; 358 measurements 

Degree AICc

0 1455

1 294.3

2 251.3

3 47.1

4 34.0

5 35.5

4 34.0
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Muddy Creek: residuals from poly(d=4) fit 
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Blue = sample
Red = model

Blue = sample
Red = model

Minimum AICc ARMA model:  ARMA(1,1)

Yt = .574 Yt-1 + εt – .311 εt-1, {εt}~WN(0,.0564)       

Some theory:

• LS estimates of trend parameters are 
asymptotically efficient.

• LS estimates are asymptotically indep of 
cov parameter estimates.

Noncausal ARMA(1,1) model:  

Yt = 1.743 Yt-1 + εt – .311 εt-1
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Muddy Creek (cont)

Summary of models fitted to Muddy Creek bed elevation:

Degree AICc

0 1455

1 294.3

2 251.3

3 47.1

4 34.0

5 35.5

ARMA AICc

(1,2) 59.67

(2,1) 26.98

(2,1) 26.30

(1,1) 7.12

(1,1) 2.78

(1,1) 4.68
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Muddy Creek (cont)

Simulated series: polynomial degree 4 + ARMA(1,1):
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Recap of Traditional Model Fitting

Suppose {Yt} follows the linear model with time series (or spatial) errors given by
Yt = β0  + Xt1 β1 + … + Xtp βp + Wt ,

where {Wt} is a stationary (ARMA) time series.  

• Estimate (β0, . . . ,βp) by ordinary least squares (OLS).

• Identify and estimate ARMA parameters using the estimated residuals,

• Re-estimate (β0, . . . ,βp) and ARMA parameters using full MLE.

Limitations of this approach for model selection:

• Ignore potential confounding between explanatory variables and correlation in 
{Wt}.

• Ignoring autocorrelation function can mask importance of explanatory 
variables.  

)ˆˆˆ( 110 ptptt XXY β++β+β− L
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Introduction 

Model selection setup:  Suppose {Z(s), s ∈ D} is a random field where D is some 
subset of R2. 

Spatial data:  observations Z(s1), . . . , Z(sn) at locations s1, . . . , sn. 

Explanatory variables (covariates):  p explanatory variables X1(s), . . . , Xp(s) are 
available at each location s.

Linear model for Z:

Z(s) = β0  + X1(s) β1 + … + Xp(s) βp +   δ(s)

where δ(s) is a mean 0 stationary (isotropic) Gaussian random field.

Model selection issue.

• Which explanatory variables should be included in the model?

• What family of covariance functions should be used to model δ(s)?

44 344 21
ticdeterminis

                       {
stochastic

     



9

Model Selection

Problem:  How does one choose the best set of covariates and family of 
covariance functions? 

Some Objectives of Model Selection. 

1. Choose the correct order model (consistency).
- There exists  a true model and the model selection procedure will 
choose the correct set of covariates and the right family of covariance 
functions as sample size increases.

2. Choose the model that performs best for prediction (efficiency).
- Find the model that predicts (or interpolates) well at unobserved 
locations.

3. Choose the model that maximizes data compression.
- Find a model that summarizes the data in the most compact fashion, 
yet retains the salient features present in the data.
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The Geostatistical Model
Model :  

Z(s) = β0  + X1(s) β1 + … + Xp(s) βp + δ(s)

• X(s) = (1, X1(s), … , Xp(s))T is a vector of explanatory variables observed at 
location s. 

• β = (β0 , β1 , … , βp)T is a (p + 1) dimensional parameter vector.

• δ(s) is the unobserved regression error at location s. 

Assumptions on δ(s).

• δ(s) is a stationary, isotropic Gaussian process with mean 0 and covariance 
function

Cov(δ(s), δ(t)) = σ2ρ(||s-t||,θ).

• σ2 is the variance of the process

• ||s-t|| is the euclidean distance between locations s and t.

• ρ(. , θ) is an isotropic correlation function parameterized by a k-dim’l vector θ.
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Autocorrelation functions
Some standard autocorrelation functions (these are a bit limiting).

1. Exponential

2. Gaussian

3. Matern

where Κθ(.) is the modified Bessel function.

• θ1 is the range parameter controlling the rate of decay of correlations.

• θ2 is the smoothness parameter controlling the smoothness of the random field.
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Autocorrelation functions (cont)

Exponential  θ1=1.0

Gaussian  θ1= 4.0

Matern  θ1=1.5, θ2= .75

Matern  θ1=2.5, θ2= 1.0

Matern  θ1=3.5, θ2= 2.0
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Estimation
Log-likelihood:  For the data Z = (Z(s1), . . . , Z(sn))T

log LZ(β,θ,σ2) = −.5 log|σ2Ω| −.5 σ−2(Z −Xβ)Τ Ω−1 (Z −Xβ)Τ ,

where Ω = ρ(||si – sj\\;θ) is the matrix of correlations for the data vector Z. 

MLE estimate: maximizes the log-likelihood.  )ˆ,ˆ,ˆ( 2σθβ

Note.

• MLE estimates can be difficult to compute for large sample sizes.

• Restricted maximum likelihood (REML) estimates often have more desirable 
sampling properties, but performance for model selection is not clear.
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AIC for Geostatistical Models
Background on AIC (Burnham and Anderson (1998) and McQuarrie and Tsai 
(1998).):

Suppose 

• Z ~ fT

• {f (. ;ψ), ψ ∈ Ψ} is a family of candidate probability density functions.

The Kullback-Leibler information between f (. ;ψ) and fT is 

has the interpretation as a measure of the 

• distance between f (. ;ψ) and fT

• loss of information when f (. ;ψ) is used as the model instead of fT
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AIC for Geostatistical Models
By Jensen’s inequality, 

with equality holding if and only if  f (z ;ψ) = fT (z), a.e.

0)(
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Basic idea: minimize the Kullback-Leibler index

where LZ(ψ ) is the likelihood based on the data Z.  
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Problem: Cannot compute          or          , where       is the MLE of ψ.)(ψ∆ )ˆ(ψ∆ ψ̂

Strategy: Search for an unbiased estimator of 

and find the candidate model which minimizes this statistic as a function of the 
model.

))ˆ(( ψ∆ψE
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AIC for Geostatistical Models

Note: The expectation above can be written as the double expectation,

where Y is independent of Z with the same distribution.  Thus                      is an 
unbiased estimate of          .  But Y is unobserved and that is where the AIC 
correction factor comes into play.
Applied to the Geostatistical model: Parameter vector  ψ = (β,θ,σ2)T and

where

and

)ˆ(ψ∆
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AIC for Geostatistical Models

In order to compute                            we assume standard asymptotics hold: 

• is AN((β,θ)T, In
-1), where In is the Fisher information.

• For large n, In can be approximated by

• For n large,                         is approximately distributed as σ2χ2(n−p−1−k).

• is approximately independent of

Then
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AIC for Geostatistical Models

The quantity, referred to as the corrected AIC, is then 

The standard AIC statistic is given by

.
3
)2(2)ˆ,ˆ,ˆ(log2 2

−−−
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Model Selection Using Minimum Description Length

Basics of MDL:
Choose the model which maximizes the compression of the data or, equivalently, 
select the model that minimizes the code length of the data (i.e., amount of 
memory required to encode the data).

M = class of operating models for y = (y1, . . . , yn)

LF (y) = = code length of y relative to F ∈ M
Typically, this term can be decomposed into two pieces (two-part code), 

where   

= code length of the fitted model for F

= code length of the residuals based on the fitted model

,ˆ|ˆ(  ˆ()( )eL|y)LyL FFF +=

|y)L F̂(

)|eL F̂ˆ(
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Illustration Using a Simple Regression Model (see T. Lee `01)

Encoding the data:  (x1,y1), . . . , (xn,yn)

1.  “Naïve” case 
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2.  Linear model; suppose yi = a0 + a1xi , i = 1, . . . , n.  Then

)()(  )()(   
),(  ),,()"1("

101

101

aLaLxLxL
aaLxxLpL

n

n

++++=
+==

L

K

3.  Linear model with noise; suppose yi = a0 + a1xi + εi , i = 1, . . . , n, where {εi}~IID 
N(0,σ2). Then

If A < L(y1) + . . . + L(yn), then “p=1” encoding scheme dominates the “naïve” scheme.
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Model Selection Using Minimum Description Length (cont)

Applied to the Geostatistical model:
Z(s) = β0  + X1(s) β1 + … + Xp(s) βp + δ(s)

First term              :|y)L F̂(

)ˆ,,ˆ()ˆ,,ˆ(ˆ( 10 kp LL|y)L θθ+ββ= KKF

Encoding:
integer I :  log2 I bits (if I unbounded)

log2 IU   bits (if I bounded by IU)

MLE :  ½ log2N  bits (where N = number of observations used to compute ; 
Rissanen (1989))

θ̂ θ̂
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Model Selection Using Minimum Description Length (cont)
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Second term              : Using Shannon’s classical results on information theory, 
Rissanen demonstrates that the code length of      can be approximated by the 
negative of the log-likelihood of the fitted model, i.e., by  

ê

)ˆ,ˆ,ˆ(logˆ|ˆ( 2σθβ−≈ ZL)eL F
MDL for the model F is then 

)ˆ,ˆ,ˆ(loglog)1(2/1 2
22 σθβ−++= ZLnkpMDL

The strategy is to find the model that minimizes MDL.

Note:

Penalty coefficient (log2 n) is larger than that (2) for AIC. 

( )nkpLMDL Z 2
2

2 log)1()ˆ,ˆ,ˆ(log22/1 +++σθβ−=
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Model Selection and Spatial Correlation

Traditional approach to model selection:

1. Select explanatory variable to model the large scale variation.  Here one 
might use AICc assuming independence in the noise term.  

2. Estimate correlation function parameters using residuals from model in 
previous step.

3. Re-estimate regression parameters using GLS.

4. Iterate steps 2 and 3 until convergence.

Limitations of this approach:

• Ignore potential confounding between explanatory variables and correlation in 
spatial process.

• Ignoring autocorrelation function can mask importance of explanatory 
variables.  
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Model Selection: Simulation Set-up

Goal of simulation study:  compare model selection performance of AIC versus 
traditional method. 

1. Sampling design: 100 sites randomly located on [0,10]×[0,10].  

2. Explanatory variables: Five potential explanatory variables, 
X1(sj), X2(sj), . . . , X5(sj),  j  =1, . . . , 100, IID sqrt(12/10)*t12

3. Response variables:
Z = 2 + 0.75 X1 + 0.50 X2 + 0.25 X3 + δ,

where δ is Gaussian with mean 0, σ2  =50, and Matern autocorrelation
function with parameters θ1=4 and θ2=1.  

4. Replicates:  500 replicates were simulated with a new Gaussian random field
generated for each replicate.

5. AIC: Computed for 25=32 possible models per replicate. 
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Model Selection: Simulation Results for the Random Pattern

• Independent AIC and Spatial AIC report the percentage of simulations that each 
model was selected.

• Of the 32 possible models, the results given here include only those with 10% or 
more support for one of the models.  

Variables in Model Spatial AIC

X1, X2, X3 56.0

X1, X2, X3, X5 14.4

X1, X2, X3, X4 10.8

X1, X2 10.2

Intercept only 0.0

X1 0.4

X2 0.0

Independent AIC

2.4

0.2

0.2

8.4

26.8

14.2

13.8

MDL

40.4

4.2

0.8

46.4

0.0

1.2

0.2
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Effect of Sampling Design

• Each column reports the percentage of simulations that each model was selected.

• Of the 32 possible models, the results given here include only those with 10% or 
more support for one of the models.  

Highly
Variables in Model     Clustered      

X1, X2, X3 73

X1, X2 0

X1, X2, X3, X4 12

X1, X2, X3, X4, X5 10

Regular 
Pattern     

43     

21      

8    

7     

Random

46

18

8  

11

Lightly                   
Clustered 

65

2

13              

13
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Effect of Smoothness Parameter

• Each column reports the percentage of simulations that each model was selected.

• Of the 32 possible models, the results given here include only those with 10% or 
more support for one of the models.  

θ2 = 0.50

Variables in Model spat ind

X1, X2, X3 15 3

X1, X2, X3, X5 1 0

X1, X2, X3, X4 3 0

X1, X2 22 7

Intercept only 4 30

X1 17 17 

X2 4 12  

θ2 = 0.75

spat ind

35 1

3 0

7 0

20 4

0 32

12 20

0 11

θ2 = 1.00

spat ind

56 2

14 0

11 0

10 8

0 27

0 14

0 14

θ2 = 4.00

spat ind

62 3

14 0

18 1

0 8

0 22

0 20

0 8



32
 

 

Effect of smoothness (cont)
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Matern  θ1=4.0, θ2= .5

Matern  θ1=4.0, θ2= .75

Matern  θ1=4.0, θ2= 1.0

Matern  θ1=4.0, θ2= 4.0
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Effect of Range

• Each column reports the percentage of simulations that each model was selected.

• Of the 32 possible models, the results given here include only those with 10% or 
more support for one of the models.  

θ1 = 2

Variables in Model spat ind

X1, X2, X3 15 2

X1, X2, X3, X5 6 0

X1, X2, X3, X4 7 0

X1, X2 22 8

Intercept only 0 22

X1 14 20 

X2 1 8  

θ1 = 4

spat ind

56 2

14 0

11 0

10 8

0 27

0 14

0 14

θ1 = 6

spat ind

66 5

11 0

19 2

0 14

0 25

0 15

0 11

θ1 = 8

spat ind

71 4

10 0

14 1

0 21

0 12

0 23

0 9
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Effect of range (cont)
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Matern  θ1=4.0, θ2= 1.0

Matern  θ1=4.0, θ2= 1.0

Matern  θ1=6.0, θ2= 1.0

Matern  θ1=8.0, θ2= 1.0
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Prediction

Efficient prediction:  

• Time series (Shibata (1980), Brockwell and Davis (1991)).  AIC is an 
efficient order selection procedure for autoregressive models. 

• Regression (see McQuarrie and Tsai (1998)).

• Other notions of efficiency, e.g., Kullback-Leibler efficiency and L2 efficiency 
(see McQuarrie and Tsai (1998)).  
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Prediction Error

Simulations:  

• Model selection and estimation using 100 observations. 

• Used fitted model to predict at 100 additional locations.

• Evaluated performance using mean square prediction error

where is the universal kriging predictor for the jth prediction location.

,)ˆ(
100

1 100
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−=
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• Spatial AICC is 16.9% improvement-methods agreed only 11 times. 

• Spatial AICC is 39.6% better over independent AICC with indep noise.

• Predictive coverage was about the same (.92 for spatial AIC, .95 for indep error AIC)
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Example: Lizard abundance

Abundance for the orange-throated whiptail lizard in southern California
Ver Hoef, Cressie, Fisher, Case (2001).

Data:

• 147 locations

• Z(si) = log (average number of lizards caught per day at location si)

• Explanatory variables.  37 variables (237 = 1.374*1011 models)  reduced to the 
following 6.

ant abundance (three levels)
log (% sandy soils)
elevation
barerock indicator
% cover
log(% chaparral plants)

• 160 possible models
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Lizard abundance (cont)

Spatial    Ind  
Predictors  AIC    Rank      Rank
Ant1, % sand 54.1        1           66

Ant1, Ants2 , % sand       54.8        2 56

Ant1, % sand, % cover 55.7        3           59

Ant1, Ant2 , % sand, % cover, elevation, barerock, % chaparral        92.2 41           1

Ant1, Ant2 , % sand, elevation, barerock, % chaparral      95.3       33           2

Ant1, % sand, % cover, elevation, barerock                          95.7       38           3

Note:  MDL chooses the same model as AICC.
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Lizard abundance—simulation

Simulation of model:  use covariates Ant1, % sand, with Matern covariance function
Key: 1 = ant1, 2 = ant2, 3 = ant3, 4 = % sand, 5 = elevation, 

6 = barerock, 7 = cover, 8 = chaparral plants
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Summary Remarks

1. Spatial correlation should not be ignored when selecting explanatory 
variables.

2. Model choice for prediction should involve joint selection of the explanatory 
variables and the form of the autocorrelation function. 

3. Sampling patterns can severely impact model selection.

4. MDL offers a nice philosophical alternative to AIC for modeling complex 
phenomena. 


