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EVT for Space-Time Processes

Basic Set-up: 2 components, spatial and temporal.

Spatial part. Let Z(s) be a random field on [0, 1]7.

e Usually d = 1 (transect) or d = 2 (two-dimensional space).

e Z(s) is value of the random field at location s € [0, 1]°.

e View Z(s) as a random element of I = ([0, 1]¢) of cadlag functions
Ji-topology; see Bickel and Wichura (1971).

e Will assume that 7 has reqularly varying tail probabilities—to be described

later.



EVT for Space-Time Processes

Temporal part. Build in serial dependence by filtering the random field at each
location s € [0,1]¢. That is, set

where
o {Z;t=0,%1,£2, ..., }is an iid sequence of random fields on [0, l}d'

e ¢;’s are deterministic continuous real-valued fields on [0, 1]%.

Note: For sy, ..., s;. fixed,

Xi(s1) Z:;o Vi(s1)Z—i(s1)

Xt T

= i fLZt—i
i=0

| Xe(se)| [ D20 Yilsw) Zi—i(sk)

1s a multivariate linear time series.



Dependence structure of (X¢)

Suppose the random field Z(s) is stationary with covariance function vz (u),

Cov(Z(s+u),Z(s)) = vz(u).

Spatial covariance of X;.

B - s ' e 3 .-'1 ’ ..-'1 ’ ~ ’
Cov(Xe(s +u), Xe(s) = | 3 wy(s + w)iy(s) | 72(w),
j=0
which is stationary in space (independent of s) if the ;s are constant functions.
In this case.

Cov(Xy(s +u), Xi(s) Z )

3=0



Dependence structure of (X¢)

Time covariance function of X;(s). For each s € |0, l]d: the time series X,(s) is a

linear process with covariance function

Cov(Xiyn(s), Xi(s)) = Z"@'ﬁl’jJrh.(S)’*?’f’j (s) | vz(0)

It the 1);’s are constant functions, then the serial correlation does not depend on s.
Note: In fact, the time series Xy defined on D0, 1]¢ is strictly stationary.

Space-time covariance function of Xy(s).

Cov(Xen(s + 1), Xi(s)) = | D tian(s+u)iby(s) | z(u)



which, if the 10;’s are constant functions, is equal to

vx(h,u) = Cov( X, p(s 4+ u), Xy(s))

Remarks:
(1) The filter functions 1;’s influence both the spatial and temporal covariances.
(2) It the ¢, are constant functions, then X; has a multiplicative covariance
function, i.e.,
vx(h,u) = Cov(Xiyn(s +u), Xi(s))

= vr(h)vz(u)



Examples and Applications

1. Maximum ozone levels. Suppose there exists a standard L for annual maxima
of ozone levels over the rectangular region [0, 1]%. Set

X(s) = maximum ozone level at site s during vear t.
Then the probability the standard L is not exceeded in n consecutive vears is

P( max Xi(s) <L, foralls € [0,1]%).

t=1.....n
2. Sea level (de Haan and Lin (2001). Let f(s) represent the height of a dyke oft
the Dutch coast at location s and set
X;(s) = maximum sea level at site s during day ¢
The probability that the dyke is not breached along the coast for n consecutive

days is

P( max X,(s) < f(s), forall s € [0,1]).

t=1.....n



Regular variation on D]0, 1}d preliminaries:

Regular variation of Z = (44, . ... Z,,)". There exists a random vector 8 defined
on S”! such that
P(IZI| > 1=.2/|Z] € )/P(1Z] > 1) % =P € ).

v, . . . ;
as t — oo where — is vague convergence on S”~!, the unit sphere in R™.

e P(O € ) is called the spectral measure.

e «v is the index of regular variation.

Equivalence: There exists a,, > 0 such that for all z > 0
nP(|Z| > a,z,Z/|Z| € -) = 2 “P(0 € )

or, equivalently,
nP(a'Z € ) 5 m()
for some Radon measure m on B(R" \{0}).
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Examples of Reeular Variation on R=:
O

1. If Z1 > 0 and Zy > 0 are iid RV («), then Z = (Z1, Zs) is regularly varying
with index a and spectral distribution
PO =(0.1)) = P(@ = (1.0)) = .5 (mass on axes).

Interpretation: Unlikely that Z; and Zy are both large at the same time.

Figure: plot of (Z,,Z,) n
for realization of 10,000.
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Examples of Recular Variation on R=:
)

2. It Zy = Zy > 0 and RV(a), then Z = (Zy, Z5) is regularly varying with index a
and spectral distribution

P8 =(1/v2,1/y/2)) =1
3. AR(1): Zy = .9Z;_1 + € , & ~IID symmetric stable (1.8). Then Z = (Z;, Z3) is

RV(1.8) with spectral measure
P(6 = (1,.9)/v/1.81) = .9898 .
P(6 = (0,1)) = .0102 5 g
Figure: plot of (Z, Z,,,)
for realization of 10,000.

x_{t+1}




Regular variation on D)0, l}d

Polar coordinate transformation: For the cadlag field = € D\{0}

r (||, 2), T=2/|7|x,
||~ is the sup-norm of x, and 0 represents the zero function: We write

D= (0,00] x S,where S = {7 : € D\{0}}.

where

Reg variation on D = ID([0, 1]%) (de Haan and Lin ‘01; Hult and Lindskog ‘03).

X is reqularly varying with spectral measure o on S and index av > 0, if there

exists a, > 0 such that for all ¢ > 0,
N P(|X||lae > ta,, X € ) St 0(),

w . . .
where — denotes weak convergence on B(S). This convergence is equivalent to
(Hult and Lindskog (2003) )

nPa'X € ) o, m(-).
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Here — denotes weak conver oence of measures in the sense

My ( f /jdmn—>/jdm:rn 1)

for all bounded continuous functions f on D\{0} which vanish outside a bounded
set (see Appendix A2.6 in Daley and Vere-Jones (1988)), and m is a measure such

that p(D\D) =

14



Characterization of regular variation on D

Proposition 1. (Hult and Lindskog (2003))Z is regularly varying if and only if

there exist a a,, > 0 such that and a collection of Radon measures my, .
s; €[0,1)9,i=1,....k, k> 1, not all of them being the null measure, with
Mg, 5 (ﬁh\Rk) = (). such that the following conditions hold:

1) Finite dimensional convergence:

n Plaz (Z(s1), - Z(sk)) € ) 5 mey_s,().
2) Tightness. For any €,n > 0 there exist 0 € (0,0.5) and ng such that for

n = no,
n P(w"(Z,0) > ane) < 1,
n P(w(Z,[0,1]\[6.1 — 8]") > ane) < 1.
Note. The measures mg, s, 8; € [0,1]%, i =1,...,k, k> 1, determine the

limiting measure m in the definition of regular variation ot Z.
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Application to Space-Time Processes

Proposition 2. Assume that {Z;} is an iid sequence of random fields on ID such

that Z is regularly varying with index a and limiting measure myz. Suppose (1);)

is a sequence of continuous fields with

> I
i=0

for some € € (0, «). Then the infinite series

min(l,a—e) )

i=0
converges a.s. in [ and is regularly varying with index o and limiting measure

X0
h - i T "I1 - J‘
m = mz oy, .
i=0
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Application to Space-Time Processes

Main ideas behind proof:
e Show convergence by bounding the sup norm and using the fact that || Z;||  is
regularly varving.
e First establish regular variation for finite sums by checking conditions (fidi
convergence and tightness) of Proposition 1.

e Extend to infinite sums by approximating the tail sums.
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Point Process Convergence

Point process convergence for the Zy’s. From Proposition 1, it follows that

7

o0
Z d
t=1 j=1

where — denotes convergence in distribution of point processes on the space
M(D\{0}) and > _.Z; ep, is a Poisson random measure on D\ {0} with intensity
measure mz.

eV UL . . . —mn
Note: The space M(ID"\{0}) is the space of point measures on D" \{0} endowed

with the topology generated by w-convergence.

Theorem.
Tl o0 0
Ny=3 e iN:E:E::p
" n Xt L
=1 i=0 j=1

Remark: This theorem generalizes the Davis and Resnick (1985) point process

convergence result for linear processes.



Application

From the Theorem. we have

-1 o - ~ N
Play! max [ Xillo < 2) = P)_ ) epio(: )

' i=0 j=1
= exp{—mgz(B)},

where
B ={y ||V > x, for some i =0,1,...}.

If the v;’s are constant functions, then

B={y:|yl>z/vs}
and
exp{—mz(B)} = exp{—ax""{} .
where ¥} = max; [1;|.

Extremal index = 9%/ > 2 [1:]

0)
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