Thoughts on Model Selection

Application of MDL to Change Point Estimation

Richard A. Davis
Colorado State University
(http://www.stat.colostate.edu/~rdavis/lectures)

Gabriel Rodriguez-Yam, CSU
Thomas Lee, CSU

PROGRAM

>Akaike Information Criterion

- Kullback-Leibler
- Adjustments
- Muddy Creek example
- Other criteria
- Consistency/efficiency
$>$ Model Selection Using Minimum Description Length (MDL)
- Fitting piecewise AR models
- Optimization using the genetic algorithm
- Examples
- simulation
- real
>Application to nonlinear models

Akaike Information Criterion (AIC)

References on AIC: Linhart and Zucchini (1986), Burnham and Anderson (1998) and McQuarrie and Tsai (1998).

Data: $\mathrm{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$
Models: $\boldsymbol{M}=$ family of operating models for Y .
Sometimes referred to as candidate (statistical) models for Y
AIC: for a given model $F \in M$ define

$$
\operatorname{AIC}(\boldsymbol{F})=-2 \log L(\hat{\boldsymbol{F}} \mid y)+2 p
$$

where

- L($\hat{\boldsymbol{F}} \mid y)$ is the likelihood evaluated at the MLE for model \boldsymbol{F}.
- $p=$ parameter dimension for model \boldsymbol{F}.

Goal: choose model $\boldsymbol{F} \in \boldsymbol{M}$ that minimizes $\operatorname{AIC}(\boldsymbol{F})$.

AIC (cont)

Example: Order selection for autoregressive (AR) time series models.

$$
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}+\varepsilon_{t}
$$

where $\left\{\varepsilon_{t}\right\}$ is IID $\mathrm{N}\left(0, \sigma^{2}\right)$.
Model: $\boldsymbol{M}=$ class of operating models $=\operatorname{AR}(p)$ models, $p \geq 0$.
AIC:

$$
\operatorname{AIC}\left(p=-2 \log L\left(\hat{\phi}, \hat{\sigma}^{2} \mid y\right)+2 p\right.
$$

Goal: choose p that minimizes $\operatorname{AIC}(p)$.

AIC (cont)

Akaike's idea: AIC is intended to be an approximately unbiased estimator of the Kullback-Leibler discrepancy between the candidate and true models.

K-L discrepancy:

$$
\begin{aligned}
I(\boldsymbol{F}) & =\int-2 \log \left(\frac{f(y \mid \boldsymbol{F})}{f_{T}(y)}\right) f_{T}(y) d y \\
& \geq 0
\end{aligned}
$$

with equality if and only if $f(. ; F)=f_{T}$. K-L discrepancy is a measure of the

- distance between $f(. ; F)$ and f_{T}
- loss of information when $f(. ; F)$ is used as the model instead of f_{T}

Adjustments:

- $2 p$ or not $2 p$
- small sample correction (Sugiuraa `78; Hurvich and Tsai `89)

$$
\operatorname{AICC}(p)=-2 \log L(\hat{\phi} \mid y)+2(p+1) n /(n-p-2)
$$

Muddy Creek- tributary to Sun River in Central Montana

Muddy Creek: surveyed every 15.24 meters, total of 5456m; 358 measurements

Degree \quad AIC $_{c}$
01455
1294.3
$2 \quad 251.3$
3
47.1
434.0
$5 \quad 35.5$

Muddy Creek: residuals from poly(d=4) fit

> Minimum AIC $_{\mathrm{c}}$ ARMA model: $\operatorname{ARMA}(1,1)$
> $Y_{t}=.574 Y_{t-1}+\varepsilon_{t}-.311 \varepsilon_{t-1},\left\{\varepsilon_{t}\right\} \sim \mathrm{WN}(0, .0564)$

Noncausal ARMA(1,1) model:
$Y_{t}=1.743 Y_{t-1}+\varepsilon_{t}-.311 \varepsilon_{t-1}$

Muddy Creek (cont)

Summary of models fitted to Muddy Creek bed elevation:

Degree	AIC $_{c}$	ARMA	
AIC			
c			
0	1455	$(1,2)$	59.67
1	294.3	$(2,1)$	26.98
2	251.3	$(2,1)$	26.30
3	47.1	$(1,1)$	7.12
4	34.0	$\mathbf{(1 , 1)}$	2.78
5	35.5	$(1,1)$	4.68

Muddy Creek (cont)

Simulated series: polynomial degree 4 + ARMA(1,1):

A Brief History (of AIC) in Time

Akaike `73: developed AIC Hannan and Quinn `79: showed that AIC was NOT consistent. That is the AIC estimate of p did not necessarily converge to the true AR order.

Hannan and Quinn `79 and Hannan `80: showed that BIC was consistent. That is the BIC estimate of p converges to the true AR order.

Shibata `80: showed AIC was efficient (for prediction). Here true model is an infinite order AR process.

Hurvich and Tsai `89: argued for a return to AIC based on K-L discrepancy considerations.

Burnham and Anderson `98: popularized the use of AIC in ecology.

Other criteria

AICC:

$$
\operatorname{AICC}(p)=-2 \log L(\hat{\phi} \mid y)+2(p+1) n /(n-p-2)
$$

BIC/Schwartz:

$$
\operatorname{BIC}(p)=-2 \log L(\hat{\phi} \mid y)+2(p+1) \log n,
$$

MDL: designed to maximize the compression of the data

$$
\operatorname{MDL}(p)=-2 \log L(\hat{\phi} \mid y)+(p+1) \log n,
$$

Model Selection

Problem 1: How does one choose the best model?
Problem 2: What do we mean by best?

Some Objectives of Model Selection.

1. Choose the correct order model (consistency).

- There exists a true model and the model selection procedure will choose the correct set of covariates and the right family of covariance functions as sample size increases. (BIC,MDL)

2. Choose the model that performs best for prediction (efficiency).

- Find the model that predicts (or interpolates) well at unobserved locations. (AIC, AICC)

3. Choose the model that maximizes data compression.

- Find a model that summarizes the data in the most compact fashion, yet retains the salient features present in the data. (MDL)

Fitting Piecewise AR Models

Time Series: y_{1}, \ldots, y_{n}
Piecewise AR model:

$$
Y_{t}=\gamma_{j}+\phi_{j 1} Y_{t-1}+\cdots+\phi_{j p_{j}} Y_{t-p_{j}}+\sigma_{j} \varepsilon_{t}, \quad \text { if } \tau_{j-1} \leq t<\tau_{j}
$$

where $\tau_{0}=1<\tau_{1}<\ldots<\tau_{m-1}<\tau_{m}=n+1$, and $\left\{\varepsilon_{t}\right\}$ is $\operatorname{IID}(0,1)$.
Goal: Estimate

$$
\begin{aligned}
& m=\text { number of segments } \\
& \tau_{j}=\text { location of } j^{\text {th }} \text { break point } \\
& \gamma_{j}=\text { level in } j^{\text {th }} \text { epoch } \\
& p_{j}=\text { order of AR process in } j^{\text {th }} \text { epoch } \\
& \left(\phi_{j 1}, \ldots, \phi_{j p_{j}}\right)=\text { AR coefficients in } j^{\text {th }} \text { epoch } \\
& \sigma_{j}=\text { scale in } j^{\text {th }} \text { epoch }
\end{aligned}
$$

Model Selection Using Minimum Description Length

Basics of MDL (Rissanen):

Choose the model which maximizes the compression of the data or, equivalently, select the model that minimizes the code length of the data (i.e., amount of memory required to encode the data).

$$
\boldsymbol{M}=\text { class of operating models for } y=\left(y_{1}, \ldots, y_{n}\right)
$$

$$
L_{F}(y)=\text { code length of } y \text { relative to } F \in \boldsymbol{M}
$$

Typically, this term can be decomposed into two pieces (two-part code),

$$
L_{\boldsymbol{F}}(y)=L(\hat{\boldsymbol{F}} \mid y)+L(\hat{e} \mid \hat{\boldsymbol{F}}),
$$

where
$L(\hat{\boldsymbol{F}} \mid y)=$ code length of the fitted model for \boldsymbol{F}
$L(\hat{e} \mid \hat{F})=$ code length of the residuals based on the fitted model

Illustration Using a Simple Regression Model (see T. Lee `01)

Encoding the data: $\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{n}, y_{n}\right)$

1. "Naïve" case

$$
\begin{aligned}
L(\text { "naive" }) & =L\left(x_{1}, \ldots, x_{n}\right)+L\left(y_{1}, \ldots, y_{n}\right) \\
& =L\left(x_{1}\right)+\cdots+L\left(x_{n}\right)+L\left(y_{1}\right)+\cdots+L\left(y_{n}\right)
\end{aligned}
$$

2. Linear model; suppose $y_{i}=a_{0}+a_{1} x_{i}, i=1, \ldots, n$. Then

$$
\begin{aligned}
L(" p=1 ") & =L\left(x_{1}, \ldots, x_{n}\right)+L\left(a_{0}, a_{1}\right) \\
& =L\left(x_{1}\right)+\cdots+L\left(x_{n}\right)+L\left(a_{0}\right)+L\left(a_{1}\right)
\end{aligned}
$$

3. Linear model with noise; suppose $y_{i}=a_{0}+a_{1} x_{i}+\varepsilon_{i}, i=1, \ldots, n$, where $\left\{\varepsilon_{i}\right\} \sim$ IID $N\left(0, \sigma^{2}\right)$. Then

$$
L(" p=1 ")=L\left(x_{1}\right)+\cdots+L\left(x_{n}\right)+\underbrace{L\left(\hat{a}_{0}\right)+L\left(\hat{a}_{1}\right)+L\left(\hat{\sigma}^{2}\right)+L\left(\hat{\varepsilon}_{1}, \ldots, \hat{\varepsilon}_{n} \mid \hat{a}_{0}, \hat{a}_{1}, \hat{\sigma}^{2}\right)}_{A}
$$

If $A<L\left(y_{1}\right)+\ldots+L\left(y_{n}\right)$, then " $p=1$ " encoding scheme dominates the "naïve" scheme.

Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:

$$
Y_{t}=\gamma_{j}+\phi_{j 1} Y_{t-1}+\cdots+\phi_{j p_{j}} Y_{t-p_{j}}+\sigma_{j} \varepsilon_{t}, \quad \text { if } \tau_{j-1} \leq t<\tau_{j},
$$

After some calculation, the MDL for this class of models is
$\operatorname{MDL}\left(m,\left(\tau_{1}, p_{1}\right), \ldots,\left(\tau_{m}, p_{m}\right)\right)$

$$
=\log _{2} m+m \log _{2} n+\sum_{j=1}^{m} \log _{2} p_{j}+\sum_{j=1}^{m} \frac{p_{j}+2}{2} \log _{2} n_{j}+\sum_{j=1}^{m} \frac{n_{j}}{2} \log _{2}\left(2 \pi \hat{\sigma}_{j}^{2}\right)+\frac{n}{2}
$$

Goal: minimize MDL wrt to

$$
\begin{aligned}
& m=\text { number of segments } \\
& \tau_{j}=\text { location of } j^{\text {th }} \text { break point } \\
& \gamma_{j}=\text { level in } j^{\text {th }} \text { epoch } \\
& p_{j}=\text { order of AR process in } j^{\text {th }} \text { epoch } \\
& \left(\phi_{j 1}, \ldots, \phi_{j p_{j}}\right)=\text { AR coefficients in } j^{\text {th }} \text { epoch } \\
& \sigma_{j}=\text { scale in } j^{\text {th }} \text { epoch }
\end{aligned}
$$

Optimization Using Genetic Algorithms

Basics of GA:

Class of optimization algorithms that mimic natural evolution.

- Start with an initial set of chromosomes, or population, of possible solutions to the optimization problem.
- Parent chromosomes are randomly selected (proportional to the rank of their objective function values), and produce offspring using crossover or mutation operations.
- After a sufficient number of offspring are produced to form a second generation, the process then restarts to produce a third generation.
- Based on Darwin's theory of natural selection, the process should produce future generations that give a smaller (or larger) objective function.

Application to Structural Breaks-(cont)

Genetic Algorithm: Chromosome consists of n genes, each taking the value of -1 (no break) or p (order of AR process). Use natural selection to find a near optimal solution.
Map the break points with a chromosome c via

$$
\left(m,\left(\tau_{1}, p_{1}\right) \ldots,\left(\tau_{m}, p_{m}\right)\right) \longleftrightarrow c=\left(\delta_{1}, \ldots, \delta_{\mathrm{n}}\right),
$$

where

$$
\delta_{t}=\left\{\begin{array}{l}
-1, \text { if no break point at } t, \\
p_{j}, \text { if break point at time } t=\tau_{j-1} \text { and AR order is } p_{j} .
\end{array}\right.
$$

For example,

$$
\begin{gathered}
c=(2,-1,-1,-1,-1,0,-1,-1,-1,-1,0,-1,-1,-1,3,-1,-1,-1,-1,-1) \\
\mathrm{t}: 1
\end{gathered}
$$

would correspond to a process as follows:

$$
\operatorname{AR}(2), t=1: 5 ; \operatorname{AR}(0), t=6: 10 ; \operatorname{AR}(0), t=11: 14 ; \operatorname{AR}(3), t=15: 20
$$

Implementation of Genetic Algorithm-(cont)

Generation 0: Start with L (200) randomly generated chromosomes, c_{1}, \ldots . , c_{L} with associated MDL values, $\operatorname{MDL}\left(c_{1}\right), \ldots, M D L\left(c_{L}\right)$.

Generation 1: A new child in the next generation is formed from the chromosomes c_{1}, \ldots, c_{L} of the previous generation as follows:
$>$ with probability π_{c}, crossover occurs.

- two parent chromosomes c_{i} and c_{j} are selected at random with probabilities proportional to the ranks of $\operatorname{MDL}\left(c_{i}\right)$.
- $k^{\text {th }}$ gene of child is $\delta_{k}=\delta_{i, k}$ w.p. $1 / 2$ and $\delta_{j, k}$ w.p. $1 / 2$
$>$ with probability $1-\pi_{c}$, mutation occurs.
- a parent chromosome c_{i} is selected
- $k^{\text {th }}$ gene of child is $\delta_{k}=\delta_{i, k}$ w.p. $\pi_{1} ;-1$ w.p. π_{2};and p w.p. $1-\pi_{1}-\pi_{2}$.

Implementation of Genetic Algorithm-(cont)

Execution of GA: Run GA until convergence or until a maximum number of generations has been reached. .
Various Strategies:
> include the top ten chromosomes from last generation in next generation.
$>$ use multiple islands, in which populations run independently, and then allow migration after a fixed number of generations. This implementation is amenable to parallel computing.

Example: Monthly Deaths \& Serious Injuries, UK

Data: $Y_{\mathrm{t}}=$ number of monthly deaths and serious injuries in UK, Jan `75Dec `84, ($t=1, \ldots, 120$) Remark: Seat belt legislation introduced in Feb `83 ($t=99$).

$Y_{t}=a+b f(t)+W_{t}$,
$f(t)=\left\{\begin{array}{l}0, \text { if } 1 \leq t \leq 98, \\ 1, \text { if } 98<t \leq 120 .\end{array}\right.$

Example: Monthly Deaths \& Serious Injuries, UK

Data: $Y_{\mathrm{t}}=$ number of monthly deaths and serious injuries in UK, Jan ${ }^{`} 75$ Dec `84, (\(t=1, \ldots, 120\)); Plot below is for differenced series, \(Y_{t}-Y_{t-12}\) Remark: Seat belt legislation introduced in Feb `83 ($t=99$).

Results from GA: 3 pieces; time $=4.4$ secs
Piece 1: ($\mathrm{t}=1, \ldots, 98$) IID; Piece 2: $(\mathrm{t}=99, \ldots$ 108) IID; Piece 3: $\mathrm{t}=109, \ldots, 120$ AR(1)

Simulation Examples-based on Ombao et al. (2001) test cases

1. Piecewise stationary with dyadic structure:

Consider a time series following the model,
where $\left\{\varepsilon_{t}\right\} \sim \operatorname{IID~N}(0,1) . \quad Y_{t}=\left\{\begin{array}{cl}.9 Y_{t-1}+\varepsilon_{t}, & \text { if } 1 \leq t<513, \\ 1.69 Y_{t-1}-.81 Y_{t-2}+\varepsilon_{t}, & \text { if } 513 \leq t<769, \\ 1.32 Y_{t-1}-.81 Y_{t-2}+\varepsilon_{t}, & \text { if } 769 \leq t \leq 1024,\end{array}\right.$

Simulation Examples (cont)

2. Slowly varying $A R(2)$ model:

$$
Y_{t}=a_{t} Y_{t-1}-.81 Y_{t-2}+\varepsilon_{t} \text { if } 1 \leq t \leq 1024
$$

where $\quad a_{t}=.8[1-0.5 \cos (\pi t / 1024)]$, and $\left\{\varepsilon_{t}\right\} \sim \operatorname{IID} N(0,1)$.

2. Slowly varying $\operatorname{AR}(2)$ (cont)

GA results: 3 pieces, breaks at $\tau_{1}=293, \tau_{2}=615$. Total run time 27.45 secs
Fitted model:

	ϕ_{1}	ϕ_{2}	σ^{2}
$1-292:$.365	-0.753	1.149
293-614:	.821	-0.790	1.176
615-1024:	1.084	-0.760	0.960

True Model

Fitted Model

2. Slowly varying $\operatorname{AR}(2)$ (cont)

In the graph below right, we average the spectogram over the GA fitted models generated from each of the 200 simulated realizations.

Average Model

Examples

Speech signal: GREASY

Speech signal: GREASY $n=5762$ observations $m=15$ break points Run time $=18.02$ secs

Examples

Large brown bat echolocation: 400 data points taken at 7 microsecond intervals (total duration of .0028 seconds). Data and ideas about M-stationarity described here are from Buddy Gray, Wayne Woodward, and their group at SMU. http://faculty.smu.edu/hgray/research.htm
bat echolocation

Features of data:

- time varying frequency, examples of which are chirps and doppler signals found in radar, sonar, and communication theory.
- data appears to be made up of two signals.
- each signal has a frequency that is changing linearly in time. i.e., that is the cycle is lengthening in time.
- an $\operatorname{AR}(20)$ model is the best fitting AR model. Residuals are uncorrelated but not independent.

Examples (bat data cont)

GA results: 6 pieces, breaks at $\tau_{1}=16, \tau_{2}=98, \tau_{3}=205, \tau_{4}=265, \tau_{5}=353$.
Fitted model: AR orders 1, 6, 13, 7, 13, 5; Total run time 4.7 secs

Examples (bat data spectrograms)

Euler(12), Gray et al

Auto-PARM

Example: EEG Time series

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left parietal). Female subject was diagnosed with left temporal lobe epilepsy. Data collected by Dr. Beth Malow and analyzed in Ombao et al (2001). (n=32,768; sampling rate of 100 H$)$. Seizure started at about 1.85 seconds.

T3 Channel

P3 Channel

Example: EEG Time series (cont)

Remarks:

- the general conclusions of this analysis are similar to those reached in Ombao et al.
- prior to seizure, power concentrated at lower frequencies and then spread to high frequencies.
- power returned to the lower frequencies at conclusion of seizure.

T3 Channel

P3 Channel

Example: EEG Time series (cont)

Remarks (cont):

- T3 and P3 strongly coherent at 9-12 Hz prior to seizure.
- strong coherence at low frequencies just after onset of seizure.
- strong coherence shifted to high frequencies during the seizure.

T3/P3 Coherency

Application to Parameter-Driven SS Models

State Space Model Setup:

Observation equation:

$$
p\left(y_{t} \mid \alpha_{t}\right)=\exp \left\{\alpha_{t} y_{t}-b\left(\alpha_{t}\right)+c\left(y_{t}\right)\right\} .
$$

State equation: $\left\{\alpha_{\}}\right\}$follows the piecewise $\operatorname{AR}(1)$ model given by

$$
\alpha_{t}=\gamma_{k}+\phi_{k} \alpha_{t-1}+\sigma_{k} \varepsilon_{t}, \text { if } \tau_{k-1} \leq t<\tau_{k} \text {, }
$$

where $1=\tau_{0}<\tau_{1}<\ldots<\tau_{m}<n$, and $\left\{\varepsilon_{t}\right\} \sim \operatorname{IID} N(0,1)$.
Parameters:

$$
\begin{aligned}
& m=\text { number of break points } \\
& \tau_{k}=\text { location of break points } \\
& \gamma_{k}=\text { level in } k^{\text {th }} \text { epoch } \\
& \phi_{k}=A R \text { coefficients } \mathrm{k}^{\text {th }} \text { epoch } \\
& \sigma_{k}=\text { scale in } \mathrm{k}^{\text {th }} \text { epoch }
\end{aligned}
$$

Count Data Example

Model: $Y_{t} \mid \alpha_{t} \sim \operatorname{Pois}\left(\exp \left\{\beta+\alpha_{t}\right\}\right), \alpha_{t}=\phi \alpha_{t-1}+\varepsilon_{t},\left\{\varepsilon_{t}\right\} \sim$ IID $N\left(0, \sigma^{2}\right)$

True model:

- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim \operatorname{Pois}\left(\exp \left\{.7+\alpha_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=.5 \alpha_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}},\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .3), t<250$
- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim \operatorname{Pois}\left(\exp \left\{.7+\alpha_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=-.5 \alpha_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}},\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .3), t>250$.
- GA estimate 251, time 267secs

SV Process Example

Model: $Y_{t} \mid \alpha_{t} \sim N\left(0, \exp \left\{\alpha_{t}\right\}\right), \alpha_{t}=\gamma+\phi \alpha_{t-1}+\varepsilon_{t},\left\{\varepsilon_{t}\right\} \sim$ IID $N\left(0, \sigma^{2}\right)$

True model:

- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim N\left(0, \exp \left\{\alpha_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=-.05+.975 \alpha_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}},\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .05), t \leq 750$
- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim N\left(0, \exp \left\{\alpha_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=-.25+.900 \alpha_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}, \quad\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .25), t>750$.
- GA estimate 754, time 1053 secs

SV Process Example

Model: $Y_{t} \mid \alpha_{t} \sim N\left(0, \exp \left\{\alpha_{t}\right\}\right), \alpha_{t}=\gamma+\phi \alpha_{t-1}+\varepsilon_{t},\left\{\varepsilon_{t}\right\} \sim$ IID $N\left(0, \sigma^{2}\right)$

True model:

- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim N\left(0, \exp \left\{\alpha_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=-.175+.977 \alpha_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}},\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .1810), t \leq 250$
- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim N\left(0, \exp \left\{\alpha_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=-.010+.996 \alpha_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}},\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .0089), t>250$.
- GA estimate 251, time 269s

SV Process Example-(cont)

True model:

- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim N\left(0, \exp \left\{\mathrm{a}_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=-.175+.977 \alpha_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t}},\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .1810), t \leq 250$
- $Y_{\mathrm{t}} \mid \alpha_{\mathrm{t}} \sim N\left(0, \exp \left\{\alpha_{\mathrm{t}}\right\}\right), \alpha_{\mathrm{t}}=-.010+.996 \alpha_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}},\left\{\varepsilon_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{N}(0, .0089), t>250$.

Fitted model based on no structural break:

- $Y_{t} \mid \alpha_{t} \sim N\left(0, \exp \left\{\alpha_{t}\right\}\right), \alpha_{t}=-.0645+.9889 \alpha_{t-1}+\varepsilon_{t},\left\{\varepsilon_{t}\right\} \sim$ IID $N(0, .0935)$

SV Process Example-(cont)

Fitted model based on no structural break:

- $Y_{t} \mid \alpha_{t} \sim N\left(0, \exp \left\{\alpha_{t}\right\}\right), \alpha_{t}=-.0645+.9889 \alpha_{t-1}+\varepsilon_{t},\left\{\varepsilon_{t}\right\} \sim \operatorname{IID} N(0, .0935)$

Summary Remarks

1. MDL has an appealing model selection interpretation that may be useful in a variety of applications.
2. MDL appears to be a good criterion for detecting structural breaks.
3. Optimization using a genetic algorithm is well suited to find a near optimal value of MDL.
4. This procedure extends easily to multivariate problems.
