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Akaike Information Criterion (AIC)
References on AIC: Linhart and Zucchini (1986), Burnham and Anderson 
(1998) and McQuarrie and Tsai (1998).

Data: Y = (Y1, . . . , Yn)

Models: M = family of operating models for Y.  

Sometimes referred to as candidate (statistical) models for Y

AIC: for a given model F ∈ M  define

AIC(F)

where

• is the likelihood evaluated at the MLE for model F.

• p = parameter dimension for model F.

Goal: choose model F ∈ M  that minimizes AIC(F).

,2  ˆ(log2 p|y)L +−= F
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AIC (cont)

Example: Order selection for autoregressive (AR) time series models.

where {εt} is IID N(0,σ2).

Model: M = class of operating models = AR(p) models, p ≥ 0.

AIC:

AIC(p)

Goal: choose p that minimizes AIC(p).

    , 110 tptptt YYY ε+φ++φ+φ= −− L

,2  ˆ,ˆ(log2 2 p|y)L +σφ−=
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AIC (cont)

Akaike’s idea: AIC is intended to be an approximately unbiased estimator of 
the Kullback-Leibler discrepancy between the candidate and true models. 

K-L discrepancy:

with equality if and only if f (. ; F) = fT . K-L discrepancy is a measure of the

• distance between f (. ; F) and fT

• loss of information when f (. ; F) is used as the model instead of fT
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Adjustments:
• 2p or not 2p 
• small sample correction (Sugiuraa `78; Hurvich and Tsai `89)
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Muddy Creek- tributary to Sun River in Central Montana

Muddy Creek: surveyed every 15.24 meters, total of 5456m; 358 measurements

Degree AICc

0 1455

1 294.3

2 251.3

3 47.1

4 34.0

5 35.5

4 34.0
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Muddy Creek: residuals from poly(d=4) fit 
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Blue = sample
Red = model

Blue = sample
Red = model

Minimum AICc ARMA model:  ARMA(1,1)

Yt = .574 Yt-1 + εt – .311 εt-1, {εt}~WN(0,.0564)       

Noncausal ARMA(1,1) model:  

Yt = 1.743 Yt-1 + εt – .311 εt-1
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Muddy Creek (cont)

Summary of models fitted to Muddy Creek bed elevation:

Degree AICc

0 1455

1 294.3

2 251.3

3 47.1

4 34.0

5 35.5

ARMA AICc

(1,2) 59.67

(2,1) 26.98

(2,1) 26.30

(1,1) 7.12

(1,1) 2.78

(1,1) 4.68
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Muddy Creek (cont)

Simulated series: polynomial degree 4 + ARMA(1,1):
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A Brief History (of AIC) in Time

Akaike `73: developed AIC 

Hannan and Quinn `79: showed that AIC was NOT consistent.  That is the 
AIC estimate of p did not necessarily converge to the true AR order.  

Hannan and Quinn `79 and Hannan `80: showed that BIC was consistent.  
That is the BIC estimate of p converges to the true AR order.  

Shibata `80:  showed AIC was efficient (for prediction).  Here true model is 
an infinite order AR process.

Hurvich and Tsai `89: argued for a return to AIC based on K-L discrepancy 
considerations.

Burnham and Anderson `98: popularized the use of AIC in ecology.
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Other criteria

AICC:

BIC/Schwartz: 

MDL: designed to maximize the compression of the data

),2/()12(  ˆ(log2)(AICC −−++φ−= pnnp|y)Lp

,log)12(  ˆ(log2)(BIC np|y)Lp ++φ−=

,log)1(  ˆ(log2)(M np|y)LpDL ++φ−=
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Model Selection

Problem 1:  How does one choose the best model?  

Problem 2: What do we mean by best? 

Some Objectives of Model Selection. 

1. Choose the correct order model (consistency).
- There exists  a true model and the model selection procedure 
will choose the correct set of covariates and the right family of 
covariance functions as sample size increases. (BIC,MDL)

2. Choose the model that performs best for prediction (efficiency).
- Find the model that predicts (or interpolates) well at unobserved 
locations.  (AIC, AICC)

3. Choose the model that maximizes data compression.
- Find a model that summarizes the data in the most compact 
fashion, yet retains the salient features present in the data. (MDL)
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Fitting Piecewise AR Models

Time Series: y1, . . . , yn

Piecewise AR model:

where τ0 = 1 < τ1 < . . . < τm-1 < τm = n + 1, and {εt} is IID(0,1).

Goal: Estimate

m = number of segments
τj = location of jth break point 
γj = level in jth epoch
pj = order of AR process in jth epoch

= AR coefficients in jth epoch
σj = scale in jth epoch

, if    ,  111 jj-tjptjptjjt tYYY
jj

τ<≤τεσ+φ++φ+γ= −− L
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Model Selection Using Minimum Description Length

Basics of MDL (Rissanen):
Choose the model which maximizes the compression of the data or, 
equivalently, select the model that minimizes the code length of the data 
(i.e., amount of memory required to encode the data).

M = class of operating models for y = (y1, . . . , yn)

LF (y) = = code length of y relative to F ∈ M
Typically, this term can be decomposed into two pieces (two-part code), 

where   

= code length of the fitted model for F

= code length of the residuals based on the fitted model

,ˆ|ˆ(  ˆ()( )eL|y)LyL FFF +=

|y)L F̂(

)|eL F̂ˆ(
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Illustration Using a Simple Regression Model (see T. Lee `01)

Encoding the data:  (x1,y1), . . . , (xn,yn)

1.  “Naïve” case 
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2.  Linear model; suppose yi = a0 + a1xi , i = 1, . . . , n.  Then
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3.  Linear model with noise; suppose yi = a0 + a1xi + εi , i = 1, . . . , n, where {εi}~IID 
N(0,σ2). Then

If A < L(y1) + . . . + L(yn), then “p=1” encoding scheme dominates the “naïve” scheme.
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Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:
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Goal: minimize MDL wrt to
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After some calculation, the MDL for this class of models is

m = number of segments
τj = location of jth break point 
γj = level in jth epoch
pj = order of AR process in jth epoch

= AR coefficients in jth epoch
σj = scale in jth epoch

),,( 1 jjpj φφ K
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Optimization Using Genetic Algorithms

Basics of GA:
Class of optimization algorithms that mimic natural evolution.

• Start with an initial set of chromosomes, or population, of possible 
solutions to the optimization problem. 

• Parent chromosomes are randomly selected (proportional to the 
rank of their objective function values), and produce offspring using 
crossover or mutation operations.

• After a sufficient number of offspring are produced to form a second 
generation, the process then restarts to produce a third generation.

• Based on Darwin’s theory of natural selection, the process should 
produce future generations that give a smaller (or larger) objective 
function. 
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Map the break points with a chromosome c via

where

For example, 

c = (2, -1, -1, -1, -1, 0, -1,  -1, -1, -1, 0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
t: 1                       6 11 15

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

Application to Structural Breaks—(cont)

Genetic Algorithm: Chromosome consists of n genes, each taking the 
value of −1 (no break) or p (order of AR process).  Use natural selection to 
find a near optimal solution.  
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Implementation of Genetic Algorithm—(cont)

Generation 0:  Start with L (200) randomly generated chromosomes, c1, . . 
. ,cL with associated MDL values, MDL(c1), . . . , MDL(cL).

Generation 1:  A new child in the next generation is formed from the 
chromosomes c1, . . . , cL of the previous generation as follows:

with probability πc, crossover occurs. 

two parent chromosomes ci and cj are selected at random with 
probabilities proportional to the ranks of MDL(ci).

kth gene of child is δk = δi,k w.p. ½ and δj,k w.p. ½

with probability 1− πc, mutation occurs. 

a parent chromosome ci is selected 

kth gene of child is δk = δi,k w.p. π1 ; −1 w.p. π2;and p w.p. 1− π1−π2.



20

Implementation of Genetic Algorithm—(cont)

Execution of GA:  Run GA until convergence or until a maximum number 
of generations has been reached. .
Various Strategies:  

include the top ten chromosomes from last generation in next 
generation.

use multiple islands, in which populations run independently, and 
then allow migration after a fixed number of generations. This 
implementation is amenable to parallel computing.
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Data:  Yt = number of monthly deaths and serious injuries in UK, Jan `75 –
Dec `84, (t = 1,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example: Monthly Deaths & Serious Injuries, UK
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Data:  Yt = number of monthly deaths and serious injuries in UK, Jan `75 –
Dec `84, (t = 1,…, 120);  Plot below is for differenced series, Yt – Yt-12
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example: Monthly Deaths & Serious Injuries, UK
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Piece 1: (t=1,…, 98)  IID;  Piece 2: (t=99,…108) IID;  Piece 3: t=109,…,120  AR(1)
Results from GA: 3 pieces; time = 4.4secs



23

Simulation Examples-based on Ombao et al. (2001) test cases

1.  Piecewise stationary with dyadic structure:  

Consider a time series following the model,

where {εt} ~ IID N(0,1). ⎪⎩
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Simulation Examples (cont)

2.  Slowly varying AR(2) model:

where                                               and {εt} ~ IID N(0,1).

10241  if   81. 21 ≤≤ε+−= −− tYYaY ttttt

)],1024/cos(5.01[8. tat π−=

0 200 400 600 800 1000

time

0.
4

0.
6

0.
8

1.
0

1.
2

a_
t

10241  if   81. 21 ≤≤ε+−= −− tYYaY ttttt

)],1024/cos(5.01[8. tat π−=



25Time
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

2. Slowly varying AR(2)  (cont)

GA results: 3 pieces, breaks at τ1=293, τ2=615.  Total run time 27.45 secs

True Model Fitted Model

Fitted model: φ1 φ2 σ2

1- 292: .365    -0.753 1.149
293- 614:    .821    -0.790  1.176
615-1024:  1.084   -0.760        0.960
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2. Slowly varying AR(2)  (cont)

True Model Average Model

In the graph below right, we average the spectogram over the GA fitted 
models generated from each of the 200 simulated realizations.
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Examples

Speech signal: GREASY
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Time
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Speech signal: GREASY
n = 5762 observations
m = 15 break points
Run time = 18.02 secs
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Examples

Large brown bat echolocation: 400 data points taken at 7microsecond intervals 
(total duration of .0028 seconds).  Data and ideas about M-stationarity described 
here are from Buddy Gray, Wayne Woodward, and their group at SMU. 
http://faculty.smu.edu/hgray/research.htm
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Features of data:
• time varying frequency, examples of which are chirps and doppler signals
found in radar, sonar, and communication theory.

• data appears to be made up of two signals.

• each signal has a frequency that is changing linearly in time. i.e., that is 
the cycle is lengthening in time. 

• an AR(20) model is the best fitting AR model. Residuals are uncorrelated
but not independent.
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Time
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Examples (bat data cont)

GA results: 6 pieces, breaks at τ1=16, τ2=98, τ3= 205, τ4= 265, τ5= 353.  
Fitted model: AR orders 1, 6, 13, 7, 13, 5;  Total run time 4.7 secs
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Auto-PARM

Time
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Examples (bat data spectrograms)

Euler(12), Gray et al
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GA bivariate results: 11 pieces with AR orders, 17, 2, 6 15, 2, 3, 5, 9, 5, 4, 1GA univariate results: 14 breakpoints for T3;  11 breakpoints for P3

Data:  Bivariate EEG time series at channels T3 (left temporal) and P3 (left 
parietal). Female subject was diagnosed with left temporal lobe epilepsy.  Data 
collected by Dr. Beth Malow and analyzed in Ombao et al (2001).  (n=32,768; 
sampling rate of 100H).  Seizure started at about 1.85 seconds.

Example: EEG Time series
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Remarks:

• the general conclusions of this analysis are similar to those reached in 
Ombao et al.

• prior to seizure, power concentrated at lower frequencies and then 
spread to high frequencies.

• power returned to the lower frequencies at conclusion of seizure.  

Example: EEG Time series (cont)
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Remarks (cont):

• T3 and P3 strongly coherent at 9-12 Hz prior to seizure. 

• strong coherence at low frequencies just after onset of seizure.

• strong coherence shifted to high frequencies during the seizure.

Example: EEG Time series (cont)
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Application to Parameter-Driven SS Models

State Space Model Setup:
Observation equation: 

p(yt | αt) = exp{αt yt − b(αt) + c(yt)}.

State equation: {αt} follows the piecewise AR(1) model given by

αt = γk + φkαt-1 + σkεt ,   if   τk-1 ≤ t < τk ,

where 1 = τ0  < τ1 < … < τm < n, and  {εt } ~ IID N(0,1).

Parameters: 
m = number of break points
τk = location of break points 
γk = level in kth epoch
φk = AR coefficients kth epoch
σk = scale in kth epoch
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Count Data Example
Model:  Yt | αt ∼ Pois(exp{β + αt }), αt = φαt-1+ εt ,  {εt}~IID N(0, σ2)
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True model:  

Yt | αt ~ Pois(exp{.7 + αt }), αt = .5αt-1+ εt ,  {εt}~IID N(0, .3),  t < 250

Yt | αt ~ Pois(exp{.7 + αt }),  αt = -.5αt-1+ εt ,  {εt}~IID N(0, .3),  t > 250.

GA estimate 251, time 267secs
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Model:  Yt | αt ∼ N(0,exp{αt}), αt = γ  + φ αt-1+ εt ,  {εt}~IID N(0, σ2)

SV Process Example

True model:  

Yt | αt ~ N(0, exp{αt}),  αt = -.05 + .975αt-1+ εt ,  {εt}~IID N(0, .05),  t ≤ 750

Yt | αt ~ N(0, exp{αt }),  αt = -.25 +.900αt-1+ εt ,  {εt}~IID N(0, .25),  t > 750.

GA estimate 754, time 1053 secs
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Model:  Yt | αt ∼ N(0,exp{αt}), αt = γ  + φ αt-1+ εt ,  {εt}~IID N(0, σ2)

SV Process Example

True model:  

Yt | αt ~ N(0, exp{αt}),  αt = -.175 + .977αt-1+ εt ,  {εt}~IID N(0, .1810),  t ≤ 250

Yt | αt ~ N(0, exp{αt }),  αt = -.010 +.996αt-1+ εt ,  {εt}~IID N(0, .0089),  t > 250.

GA estimate 251, time 269s
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SV Process Example-(cont)
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Fitted model based on no structural break:  

Yt | αt ∼ N(0, exp{αt}), αt = -.0645 + .9889αt-1+ εt ,  {εt}~IID N(0, .0935)

True model:  

Yt | αt ~ N(0, exp{at}),  αt = -.175 + .977αt-1+ et ,  {εt}~IID N(0, .1810),  t ≤ 250

Yt | αt ∼ N(0, exp{αt }), αt = -.010 +.996αt-1+ εt ,  {εt}~IID N(0, .0089),  t > 250.
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SV Process Example-(cont)
Fitted model based on no structural break:  

Yt | αt ∼ N(0, exp{αt}), αt = -.0645 + .9889αt-1+ εt ,  {εt}~IID N(0, .0935)
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Summary Remarks

1. MDL has an appealing model selection interpretation that may be 
useful in a variety of applications.

2. MDL appears to be a good criterion for detecting structural breaks.

3. Optimization using a genetic algorithm is well suited to find a near 
optimal value of MDL.

4. This procedure extends easily to multivariate problems.


