
Generalized Linear Models 
 
We have previously worked with regression models where the response variable 
is quantitative and normally distributed. Now we turn our attention to two types of 
models where the response variable is discrete and the error terms do not follow 
a normal distribution, namely logistic regression and Poisson regression. Both 
belong to a family of regression models called generalized linear models.  
 
Generalized linear models are extensions of traditional regression models that 
allow the mean to depend on the explanatory variables through a link function, 
and the response variable to be any member of a set of distributions called the 
exponential family (e.g., Normal, Poisson, Binomial). 
 
We can use the function glm() to work with generalized linear models in R. It’s 
usage is similar to that of the function lm() which we previously used for multiple 
linear regression. The main difference is that we need to include an additional 
argument family to describe the error distribution and link function to be used in 
the model.  In this tutorial we show how glm() can be used to fit logistic 
regression and Poisson regression models. 
 
 
A. Logistic Regression 
 
Logistic regression is appropriate when the response variable is categorical with 
two possible outcomes (i.e., binary outcomes). Binary variables can be 
represented using an indicator variable Yi, taking on values 0 or 1, and modeled 

using a binomial distribution with probability P(Yi=1) = i.  Logistic regression 
models this probability as a function of one or more explanatory variables.   
 
To perform logistic regression in R, use the command: 
 

> glm(response ~ explanantory_variables, family=binomial) 
 
Note that the option family is set to binomial, which tells R to perform logistic 
regression.  
 
Ex.  A car manufacturer was interested in creating a model for determining the 
probability that families will purchase a new car during the next year. A random 
sample of 33 suburban families was selected. Data on annual income (in 
thousands of dollars) and the current age of the oldest family car (in years) was 
obtained.  A follow-up interview was conducted a year later to determine whether 
or not the family actually purchased a new car during the year (Y=1 if the family 
purchased a car and 0 otherwise).   
 
We are interested in determining the probability that a family purchases a new 
car given their income and the age of their oldest car. 



To read in the data set and fit a logistic regression model we type: 
 

> dat = read.table("Purchase.txt",header=TRUE)  
> results =  glm(new ~ income + age, family=binomial) 
> results 
 
Call:  glm(formula = new ~ income + age, family = binomial)  
 
Coefficients: 
(Intercept)       income          age   
   -4.73931      0.06773      0.59863   
 
Degrees of Freedom: 32 Total (i.e. Null);  30 Residual 
Null Deviance:      44.99  
Residual Deviance: 36.69        AIC: 42.69 

 

According to the output, the model is logit( i) = -4.74 + 0.068*income + 0.60*age. 
 
After fitting the model, we can test the overall model fit and hypothesis regarding 
a subset of regression parameters using a likelihood ratio test (LRT). Likelihood 
ratio tests are similar to partial F-tests in the sense that they compare the full 
model with a restricted model where the explanatory variables of interest are 

omitted. The p-values of the tests are calculated using the 2 distribution.   
 

To test the hypothesis H0: 1= 2=0 we can compare our model with a reduced 
model that only contains an intercept term. A likelihood ratio test comparing the 
full and reduced models can be performed using the anova() function with the 
additional option test="Chisq". 

 
> results.reduced =glm(new ~ 1, family=binomial) 
> anova(results.reduced,results, test="Chisq") 
Analysis of Deviance Table 
Model 1: new ~ 1 
Model 2: new ~ income + age 
   Resid. Df   Resid. Dev   Df   Deviance   P(>|Chi|) 
1        32        44.987                       
2        30        36.690          2     8.298         0.016  
 

The likelihood ratio test statistic is 2=8.298 with a p-value=0.016. Hence, we 
have relatively strong evidence in favor of rejecting H0.  
 



As a next step, we perform tests on the individual regression parameters. 
 

> summary(results) 
 

Call: 
glm(formula = new ~ income + age, family = binomial) 
 

Deviance Residuals:  
    Min         1Q     Median       3Q       Max   
-1.6189  -0.8949  -0.5880   0.9653   2.0846   
 

Coefficients: 
                Estimate     Std. Error      z value    Pr(>|z|)   
(Intercept)       -4.73931     2.10195       -2.255      0.0242 * 
income             0.06773     0.02806        2.414      0.0158 * 
age                   0.59863     0.39007        1.535      0.1249   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 

Null deviance: 44.987  on 32  degrees of freedom 
Residual deviance: 36.690  on 30  degrees of freedom 
AIC: 42.69 
 

Number of Fisher Scoring iterations: 4 
 

To test H0: 1=0, we use z = 2.414 (p-value=0.0158). Hence, the family’s income 
appears to have a significant impact on the probability of purchasing a new car, 
while controlling for the age of the families oldest car.  
 

To test H0: 2=0, we use z = 1.535 (p-value=0.1249). Hence, the age of a family’s 
oldest car does not appear to have a significant impact on the probability of 
purchasing a new car, once income is included in the model. 
 
To compute how the odds of purchasing a car changes as a function of income 
use the commands: 
 

> exp(coef(results)) 
(Intercept)       income           age  
0.008744682  1.070079093  1.819627221  

 
To create a 95% confidence interval for the estimate, type: 
 

> exp(confint.default(results)) 
                         2.5 %              97.5 % 
(Intercept)  0.0001420897   0.5381773 
income      1.0128238514    1.1305710 
age            0.8471457285    3.9084695 



We see that the odds ratio corresponding to income is 1.070 (95% CI: (1.013, 
1.131)). This implies that if we fix the age of the oldest car, increasing family 
income by one thousand dollars will increase the odds of purchasing a new car 
by 0.07.  
 
We are often interested in using the fitted logistic regression curve to estimate 
probabilities and construct confidence intervals for these estimates. We can do 
this using the function predict.glm. The usage is similar to that of the function 
predict which we previously used when working on multiple linear regression 
problems. The main difference is the option type, which tells R which type of 
prediction is required. The default predictions are given on the logit scale (i.e. 
predictions are made in terms of the log odds), while using type = "response" 
gives the predicted probabilities. 
 
To predict the probability that a family with an annual income of $53 thousand 
and whose oldest car is 1 year old will purchase a new car in the next year, type: 
 

> pi.hat = predict.glm(results, data.frame(income=53, age=1), 
type="response", se.fit=TRUE) 

> pi.hat$fit  
[1] 0.3656668 

 
This tells us that the predicted probability is 0.37. In order to obtain confidence 
intervals we instead need to work on the logit scale and thereafter transform the 
results into probabilities.  To create a 95% confidence interval for the estimate, 
type: 
 

> l.hat = predict.glm(results, data.frame(income=53, age=1), se.fit=TRUE) 
> ci = c(l.hat$fit - 1.96*l.hat$se.fit, l.hat$fit + 1.96*l.hat$se.fit) 

 
To transform the results to probabilities type: 
  

> exp(ci)/(1+exp(ci)) 
[1] 0.1145063 0.7198689  

 
For a family with an annual income of $53 thousand and whose oldest car is 1 
year old, the estimated probability of purchasing a new car is 0.366. A 95% CI is 
given by (0.115, 0.720).  
 
 



B. Poisson Regression 
 
Data is often collected in counts (e.g. the number of heads in 12 flips of a coin or 
the number of car thefts in a city during a year). Many discrete response 
variables have counts as possible outcomes. Binomial counts are the number of 
successes in a fixed number of trials, n. Poisson counts are the number of 
occurrences of some event in a certain interval of time (or space). While Binomial 
counts only take values between 0 and n, Poisson counts have no upper bound.  
 
We now consider a nonlinear regression model where the response outcomes 
are discrete counts that follow a Poisson distribution. Poisson regression 

provides a model that describes how the mean response , changes as a 
function of one or more explanatory variables.  To perform logistic regression in 
R, we use the command: 
 

> glm(response ~ explanantory_variables, family=poisson) 
 
Note that we specified the family to be poisson, which tells R to perform Poisson 
regression.  
 
Ex.  Researchers studied 41 male African elephants over a period of 8 years. 
The age of the elephant at the beginning of the study and the number of 
successful matings during the 8 years were recorded. We assume the number of 
matings follows a Poisson distribution, where the mean depends on the age of 
the elephant in question.  
 
We can fit a Poisson regression model using the following code: 
 

> dat = read.table("elephants.txt", header=TRUE) 
> attach(dat) 
> results =  glm(mating ~ age, family=poisson) 
> summary(results) 
 
Call: 
glm(formula = mating ~ age, family = poisson) 
 
Coefficients: 
                   Estimate   Std. Error   z value   Pr(>|z|)     
(Intercept)  -1.58201     0.54462    -2.905    0.00368 **  
age              0.06869     0.01375     4.997    5.81e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for poisson family taken to be 1) 
 
Null deviance: 75.372  on 40  degrees of freedom 



Residual deviance: 51.012  on 39  degrees of freedom 
AIC: 156.46 
 
Number of Fisher Scoring iterations: 5 

 
To determine whether there is a significant relationship between the mean 

number of matings and the age of the elephants we test H0: 1=0. The test 
statistic is z=4.997 (p-value<0.0001). Hence, it appears that age does impact the 
mean number of matings.  
 
To see how the mean number of matings increases per year use the commands: 
 

> beta =coef(results) 
> beta 
(Intercept)         age  
-1.58200796  0.06869281  
> exp(beta[2]) 
     age  
1.071107 

 
To create a 95% confidence interval for the estimate, type: 
 

> exp(confint.default(results)) 
                        2.5 %            97.5 % 
(Intercept)  0.07069036   0.5977577 
age            1.04263544   1.1003563 

 
Hence, each additional year is associated with a 7.1% increase in the mean 
number of matings. A 95% confidence interval is given by (1.043, 1.100), which 
represents a 4.3 - 10.0% increase. 
 
 
 


