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Background

In logistic regression, we were interested in studying how risk

factors were associated with presence or absence of disease.

Sometimes, though, we are interested in how a risk factor or

treatment affects time to disease or some other event. Or we

may have study dropout, and therefore subjects who we are

not sure if they had disease or not. In these cases, logistic

regression is not appropriate.

Survival analysis is used to analyze data in which the time

until the event is of interest. The response is often referred to

as a failure time, survival time, or event time.
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Examples

• Time until tumor recurrence

• Time until cardiovascular death after some treatment

intervention

• Time until AIDS for HIV patients

• Time until a machine part fails
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The survival time response

• Usually continuous

• May be incompletely determined for some subjects

– i.e.- For some subjects we may know that their survival

time was at least equal to some time t. Whereas, for other

subjects, we will know their exact time of event.

• Incompletely observed responses are censored

• Is always ≥ 0.
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Analysis issues

• If there is no censoring, standard regression procedures could

be used.

• However, these may be inadequate because

– Time to event is restricted to be positive and has a skewed

distribution.

– The probability of surviving past a certain point in time

may be of more interest than the expected time of event.

– The hazard function, used for regression in survival

analysis, can lend more insight into the failure mechanism

than linear regression.
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Censoring

Censoring is present when we have some information about

a subject’s event time, but we don’t know the exact event time.

For the analysis methods we will discuss to be valid, censoring

mechanism must be independent of the survival mechanism.

There are generally three reasons why censoring might occur:

• A subject does not experience the event before the study

ends

• A person is lost to follow-up during the study period

• A person withdraws from the study

These are all examples of right-censoring.
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Types of right-censoring

• Fixed type I censoring occurs when a study is designed to

end after C years of follow-up. In this case, everyone who

does not have an event observed during the course of the

study is censored at C years.

• In random type I censoring, the study is designed to end

after C years, but censored subjects do not all have the same

censoring time. This is the main type of right-censoring we

will be concerned with.

• In type II censoring, a study ends when there is a pre-

specified number of events.
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Regardless of the type of censoring, we must assume that it

is non-informative about the event; that is, the censoring is

caused by something other than the impending failure.
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Terminology and notation

• T denotes the response variable, T ≥ 0.

• The survival function is

S(t) = Pr(T > t) = 1− F (t).
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– The survival function gives the probability that a subject

will survive past time t.

– As t ranges from 0 to ∞, the survival function has the

following properties

∗ It is non-increasing

∗ At time t = 0, S(t) = 1. In other words, the probability

of surviving past time 0 is 1.

∗ At time t = ∞, S(t) = S(∞) = 0. As time goes to

infinity, the survival curve goes to 0.

– In theory, the survival function is smooth. In practice, we

observe events on a discrete time scale (days, weeks, etc.).
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• The hazard function, h(t), is the instantaneous rate at which

events occur, given no previous events.

h(t) = lim
∆t→0

Pr(t < T ≤ t + ∆t|T > t)
∆t

=
f(t)
S(t)

.

• The cumulative hazard describes the accumulated risk up to

time t, H(t) =
∫ t

0
h(u)du.
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If we know any one of the functions S(t), H(t), or h(t), we

can derive the other two functions.

h(t) = −∂ log(S(t))
∂t

H(t) = − log(S(t))

S(t) = exp(−H(t))
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Survival data

How do we record and represent survival data with censoring?

• Ti denotes the response for the ith subject.

• Let Ci denote the censoring time for the ith subject

• Let δi denote the event indicator

δi =
{

1 if the event was observed (Ti ≤ Ci)
0 if the response was censored (Ti > Ci).

• The observed response is Yi = min(Ti, Ci).
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Example

v
v

v

Termination of study

Ti Ci Yi δi

80 100 80 1

40 80 40 1

74+ 74 74 0

85+ 85 85 0

40 95 40 1
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Estimating S(t) and H(t)

If we are assuming that every subject follows the same

survival function (no covariates or other individual differences),

we can easily estimate S(t).

• We can use nonparametric estimators like the Kaplan-Meier

estimator

• We can estimate the survival distribution by making

parametric assumptions

– exponential

– Weibull

– Gamma

– log-normal
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Non-parametric estimation of S

• When no event times are censored, a non-parametric

estimator of S(T ) is 1− Fn(t), where Fn(t) is the empirical

cumulative distribution function.

• When some observations are censored, we can estimate S(t)
using the Kaplan-Meier product-limit estimator.
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t No. subjects Deaths Censored Cumulative

at risk survival

59 26 1 0 25/26 = 0.962
115 25 1 0 24/25× 0.962 = 0.923
156 24 1 0 23/24× 0.923 = 0.885
268 23 1 0 22/23× 0.885 = 0.846
329 22 1 0 21/23× 0.846 = 0.808
353 21 1 0 20/21× 0.808 = 0.769
365 20 0 1 20/20× 0.769 = 0.769
377 19 0 1 19/19× 0.769 = 0.769
421 18 0 1 18/18× 0.769 = 0.769
431 17 1 0 16/17× 0.769 = 0.688
... ...
... ...
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How can we get this in R?

> library(survival)
> data(ovarian)
> S1=Surv(ovarian$futime,ovarian$fustat)
> S1
[1] 59 115 156 421+ 431 448+ 464 475 477+ 563 638 744+

[13] 769+ 770+ 803+ 855+ 1040+ 1106+ 1129+ 1206+ 1227+ 268 329 353
[25] 365 377+
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> fit1=survfit(S1)
> summary(fit1)
Call: survfit(formula = S1)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
59 26 1 0.962 0.0377 0.890 1.000

115 25 1 0.923 0.0523 0.826 1.000
156 24 1 0.885 0.0627 0.770 1.000
268 23 1 0.846 0.0708 0.718 0.997
329 22 1 0.808 0.0773 0.670 0.974
353 21 1 0.769 0.0826 0.623 0.949
365 20 1 0.731 0.0870 0.579 0.923
431 17 1 0.688 0.0919 0.529 0.894
464 15 1 0.642 0.0965 0.478 0.862
475 14 1 0.596 0.0999 0.429 0.828
563 12 1 0.546 0.1032 0.377 0.791
638 11 1 0.497 0.1051 0.328 0.752
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>plot(fit1,xlab="t",ylab=expression(hat(S)*"(t)"))
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Parametric survival functions

The Kaplan-Meier estimator is a very useful tool for

estimating survival functions. Sometimes, we may want to

make more assumptions that allow us to model the data in

more detail. By specifying a parametric form for S(t), we can

• easily compute selected quantiles of the distribution

• estimate the expected failure time

• derive a concise equation and smooth function for estimating

S(t), H(t) and h(t)

• estimate S(t) more precisely than KM assuming the

parametric form is correct!
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Appropriate distributions

Some popular distributions for estimating survival curves are

• Weibull

• exponential

• log-normal (log(T ) has a normal distribution)

• log-logistic
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Estimation for parametric S(t)

We will use maximum likelihood estimation to estimate the

unknown parameters of the parametric distributions.

• If Yi is uncensored, the ith subject contributes f(Yi) to the

likelihood

• If Yi is censored, the ith subject contributes Pr(y > Yi) to

the likelihood.

The joint likelihood for all n subjects is

L =
n∏

i:δi=1

f(Yi)
n∏

i:δi=0

S(Yi).
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The log-likelihood can be written as

log L =
n∑

i:δi=1

log(h(Yi))−
n∑

i=1

H(Yi).
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Example

Let’s look at the ovarian data set in the survival library in R.

Suppose we assume the time-to-event follows an distribution,

where

h(t) = λ

and

S(t) = exp(−λt).

> s2=survreg(Surv(futime, fustat)~1 , ovarian, dist=’exponential’)
> summary(s2)

Call:
survreg(formula = Surv(futime, fustat) ~ 1, data = ovarian, dist = "exponential")

Value Std. Error z p
(Intercept) 7.17 0.289 24.8 3.72e-136

Scale fixed at 1
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Exponential distribution
Loglik(model)= -98 Loglik(intercept only)= -98
Number of Newton-Raphson Iterations: 4
n= 26

In the R output,

λ = exp(−(Intercept))

= exp(−7.17)

Therefore,

S(t) = exp(− exp(−7.17)t).
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plot(T,1-pexp(T,exp(-7.169)),xlab="t",ylab=expression(hat(S)*"(t)"))
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Example

Let’s look at the ovarian data set in the survival library in R. Suppose we assume

the time-to-event follows a Weibull distribution, where

h(t) = αγt
γ−1

and

S(t) = exp(−αt
γ
).

> s1=survreg(Surv(futime, fustat)~1 , ovarian, dist=’weibull’,scale=0)
> summary(s1)

Call:
survreg(formula = Surv(futime, fustat) ~ 1, data = ovarian, dist = "weibull",

scale = 0)
Value Std. Error z p

(Intercept) 7.111 0.293 24.292 2.36e-130
Log(scale) -0.103 0.254 -0.405 6.86e-01

Scale= 0.902
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Weibull distribution
Loglik(model)= -98 Loglik(intercept only)= -98
Number of Newton-Raphson Iterations: 5
n= 26

To match the notation above, γ = 1/Scale and α =
exp(−(Intercept)γ). This gives us the following survival

function,

S(t) = exp(− exp[−7.111/.902])t1/.902).
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plot(T,1-pweibull(T,1/0.902,exp(7.111)))
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