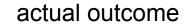

Notes on Measuring the Performance of a Binary Classifier

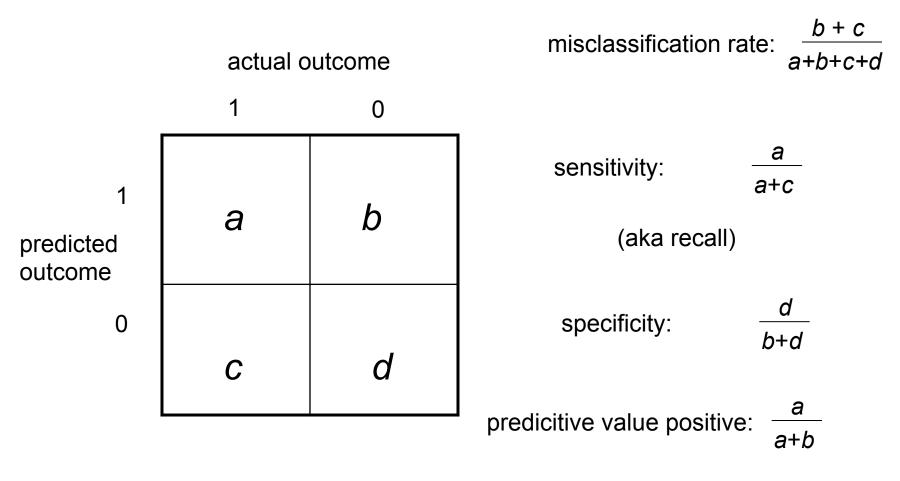
David Madigan

Training Data for a Logistic Regression Model

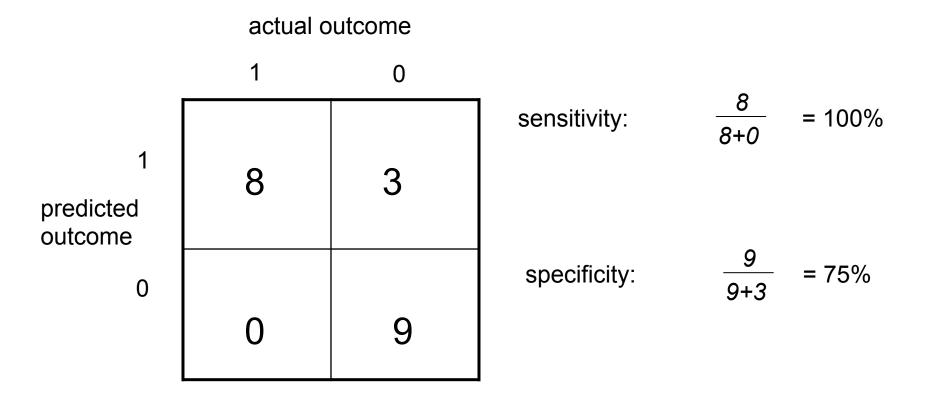

~	x	У	
1	-0.8295888	1	
2	-0.4187467	0	
3	-0.2015895	0	
4	-1.3645905	0	
5	1.31729882	1	
6	1.01640971	1	
7	1.27554669	1	
8	2.78164437	1	
9	1.55595732	1	
10	1.20748755	1	
11	-0.6737214	0	
12	-1.535182	0	
13	0.69754466	1	
14	0.5412154	1	
15	0.98863218	1	
16	2.29068842	1	
17	-1.2629932	0	
18	1.75089817	1	
19	0.51903111	1	
20	1.61445784	1	

				/
		×	У	yhat
0	21	-1.8826435	0	0.00569376
0	22	-1.7042119	0	0.00991067
0	23	-1.3975266	0	0.02547486
0	24	-1.2538216	0	0.03937468
0	25	-1.0572248	0	0.07049479
0	26	-1.0127313	0	0.08018405
0	27	-0.9385969	0	0.09905148
0	28	-0.4356167	0	0.34672181
\otimes	- 29	-0.2414375	0	0.49357551
0	30	-0.0555006	0	0.6355921
\otimes	31	0.04653626	1	0.70592175
0	32	0.12306672	1	0.75309706
0	33	0.40439298	0	0.88035014
0	34	0.58503442	1	0.92831953
0	35	0.88483088	0	0.97067413
0	36	1.00772934	1	0.97984995
0	37	1.0785977	1	0.98379361
0	38	1.08545156	1	0.98413212
0	39	1.55540951	1	0.99631
0	40	2.6417006	1	0.99987642

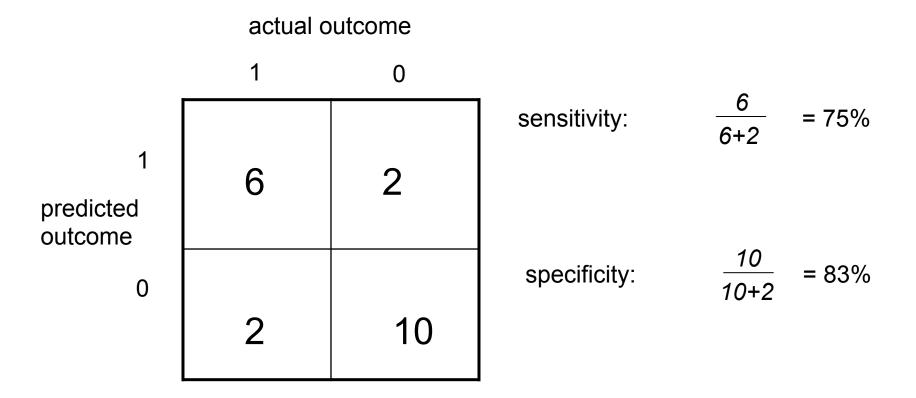
predicted probabilities


Suppose we use a cutoff of 0.5...

	1	0
1 predicted outcome	8	3
0	0	9

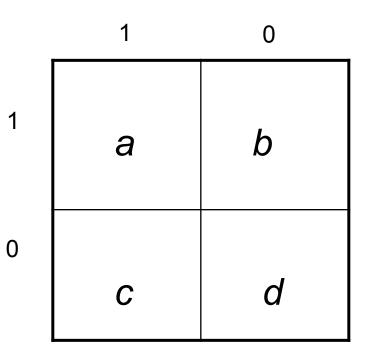

Test Data

More generally...



(aka precision)

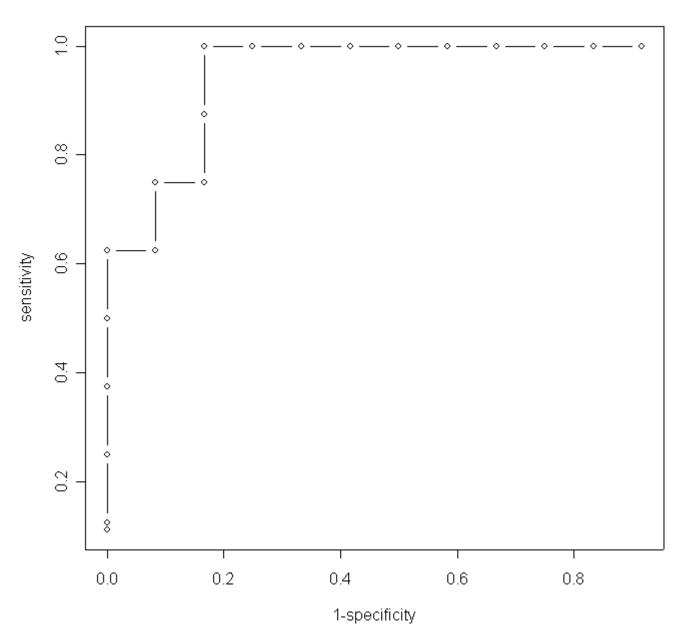
Suppose we use a cutoff of 0.5...


Suppose we use a cutoff of 0.8...

• Note there are 20 possible thresholds

 ROC computes sensitivity and specificity for all possible thresholds and plots them

- Note if threshold = minimum
 c=d=0 so sens=1; spec=0
- If threshold = maximum
 a=b=0 so sens=0; spec=1



actual outcome

	A1	-	fx	-	1							
	A	С		D	E		F		G	Н		
1			а		b	С		d		sensiti∨ity	specificity	
2	0	0.005694		8	11		0		1	1	0.083333	
3	0	0.009911		8	10	ויי	0		2	1	0.166667	
4	0	0.025475		8	9	9	0		3	1	0.25	
5	0	0.039375		8	6	3	0		4	1	0.333333	
6	0	0.070495		8	7	7	0		5	1	0.416667	
7	0	0.080184		8	6	6	0		6	1	0.5	
8	0	0.099051		8	Ę	5	0		7	1	0.583333	
9	0	0.346722		8		1	0		8	1	0.666667	
10	0	0.493576		8	3	3	0		9	1	0.75	
11	0	0.635592		8	2	2	0		10	1	0.833333	
12	1	0.705922		7	2	2	1		10	0.875	0.833333	
13	1	0.753097		6	2	2	2		10	0.75	0.833333	
14	0	0.88035		6	1		2		11	0.75	0.916667	
15	1	0.92832		5	1		3		11	0.625	0.916667	
16	0	0.970674		5	() 🚺	3		12	0.625	1	
17	1	0.97985		4	() 🚺	4		12	0.5	1	
18	1	0.983794		3	() 🚺	5		12	0.375	1	
19	1	0.984132		2	()	6		12	0.25	1	
20	1	0.99631		1	() 🚺	7		12	0.125	1	
21	1	0.999876		1	()	8		12	0.111111	1	
22												
23												

sens<-c(1,1,1,1,1,1,1,1,1,1,0.875,0.75,0.75,0.625,0.625,0.5,0.375,0.25,0.125,0.1111)
spec<-c(0.083333333,0.1666666667,0.25,0.333333333,0.4166666667,0.5,0.583333333,0.66666
33333,0.9166666667,0.9166666667,1,1,1,1,1,1)
plot(1-spec,sens,type="b",×lab="1-specificity",ylab="sensitivity",main="ROC curve")</pre>

- "Area under the curve" is a common measure of predictive performance
- R library "verification" has roc.area and roc.plot:

```
roc.area(c(1,0,1,0,1,0),c(0.9,0.6,0.4,0.7,0.8,0.1))
$A
[1] 0.7777778
$n.total
[1] 6
$n.events
[1] 3
$n.noevents
[1] 3
$p.value
[1] 0.2
```

• Squared error also used: $S(y_i - y_i)^2$

also known as the "Brier Score"