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interpretation of coefficients can be tricky… 

> litters	
   lsize bodywt brainwt	
1      3  9.447   0.444	
2      3  9.780   0.436	
3      4  9.155   0.417	
4      4  9.613   0.429	
5      5  8.850   0.425	
6      5  9.610   0.434	
7      6  8.298   0.404	
8      6  8.543   0.439	
9      7  7.400   0.409	
10     7  8.335   0.429	
11     8  7.040   0.414	
12     8  7.253   0.409	
13     9  6.600   0.387	
14     9  7.260   0.433	
15    10  6.305   0.410	
16    10  6.655   0.405	
17    11  7.183   0.435	
18    11  6.133   0.407	
19    12  5.450   0.368	
20  12  6.050   0.401	
> pairs(litters) �
	





  titl <- "Brain Weight as a Function of Litter Size and Body Weight"	
  plot(litters[, 1], litters[, 3], xlab = "Litter Size", ylab = 	
       "Brain Weight (g)", pch = 16)	
  u1 <- lm(brainwt ~ lsize, data = litters)	
  se <- summary(u1)$coef[2, 2]	
  abline(u1) 	
  mtext(side = 3, line = 0.25, text = paste("brainwt =", round(u1$coef[1], 2), "+", 	
    round(u1$coef[2], 5), "[SE =", round(se, 5),"]", "lsize"), cex = 1.0)	
	
  plot(litters[, 2], litters[, 3], xlab = "Body Weight (g)", ylab = 	
       "Brain Weight (g)", pch = 16)	
  u2 <- lm(brainwt ~ bodywt, data = litters)	
  abline(u2)	
  mtext(side = 3, line = 0.25, text = paste("brainwt =", round(u2$coef[1], 2), "+", 	
    round(u2$coef[2], 4), "bodywt"), cex = 1.0)	
  plot(litters[, 1], litters[, 2], xlab = "Litter Size", ylab = 	
       "Body Weight (g)", pch = 16, mkh = 0.04)	
  r3 <- cor(litters[, 1], litters[, 2])	
  mtext(side = 3, line = 0.25, text = paste("Correlation =", round(r3, 2)	
                                 ), cex = 1.0)	
  u <- lm(brainwt ~ lsize + bodywt, data = litters)	
  hat <-fitted(u)	
  plot(hat, litters[, 3], xlab = "Fitted Weight (g)", ylab = 	
       "Brain Weight (g)", pch = 1, lwd=2)	
  se <- summary(u)$coef[2, 2]	
  se1 <- summary(u)$coef[3, 2]	
  mtext(side = 3, line = 0.5,	
        text = paste("brainwt =",	
          round(u$ coef[1], 2), "+", round(u$coef[2], 4),	
          "[SE =", round(se, 4), "] ", "lsize \n+",	
          round(u$coef[3], 4), "[SE =", round(se1, 4), "] ",	
          "bodywt",sep=""), cex = 1.0)	





> summary(u)	
	
Call:	
lm(formula = brainwt ~ lsize + bodywt, data = litters)	
	
Residuals:	
       Min         1Q     Median         3Q        Max 	
-0.0230005 -0.0098821  0.0004512  0.0092036  0.0180760 	
	
Coefficients:	
            Estimate Std. Error t value Pr(>|t|)   	
(Intercept) 0.178247   0.075323   2.366  0.03010 * 	
lsize       0.006690   0.003132   2.136  0.04751 * 	
bodywt      0.024306   0.006779   3.586  0.00228 **	
---	
	
Residual standard error: 0.01195 on 17 degrees of freedom	
Multiple R-Squared: 0.6505, 	Adjusted R-squared: 0.6094 	
F-statistic: 15.82 on 2 and 17 DF,  p-value: 0.0001315 	

estimated amount by which E[Y] increases as lsize 
goes up by one, holding bodywt constant 



"Simpson's Paradox" 

•  2 X 2 table analysis ignores 
effects of drug-drug association 
on drug-AE association 

Rosinex  No Rosinex  Total 

 
Nausea 

No 
Nausea 

 
Nausea 

No 
Nausea 

 
Nausea 

No 
Nausea 

Ganclex 81 9 1 9 82 18 
No 

Ganclex 9 1 90 810 99 811 

RR 1 1 4.58 

Rosinex 

Nausea 

Ganclex 

X 



berkeley admission's data 1973 





Bad Things Can Happen… 









Other Odd Things Can Happen… 



Other Odd Things Can Happen… 





important diversion: these issues are  
related to "confounding" 
 
but… 
 
are not the same… 



Confounding and Causality 
•  Confounding is a causal concept 

•  “The association in the combined D+d populations is 
confounded for the effect in population D” 



Why does this happen? 

•  For confounding to occur there must be some 
characteristics/covariates/conditions that 
distinguish D from d.  

•  However, the existence of such factors does 
not in and of itself imply confounding.  

•  For example, D could be males and d 
females but it could still be the case that b=c. 



Stratification can introduce confounding 



Non-Collapsibility without Confounding 



Collapsibility with Confounding 



the hills example 

> hills	
                 dist climb      time	
Greenmantle       2.4   650 0.2680556	
Carnethy          6.0  2500 0.8058333	
Craig Dunain      6.0   900 0.5608333	
Ben Rha           7.5   800 0.7600000	
Ben Lomond        8.0  3070 1.0377778	
Goatfell          8.0  2866 1.2202778	
Bens of Jura     16.0  7500 3.4102778	
Cairnpapple       6.0   800 0.6061111	
Scolty            5.0   800 0.4958333	
Traprain          6.0   650 0.6625000	
Lairig Ghru      28.0  2100 3.2111111	
Dollar            5.0  2000 0.7175000	
Lomonds           9.5  2200 1.0833333	
Cairn Table       6.0   500 0.7355556	
Eildon Two        4.5  1500 0.4488889	
Cairngorm        10.0  3000 1.2041667	
Seven Hills      14.0  2200 1.6402778	
Knock Hill        3.0   350 1.3108333	
Black Hill        4.5  1000 0.2902778	
Creag Beag        5.5   600 0.5427778	



begin with scatterplot matrices… 

library(lattice)	
splom(~hills, cex.labels=1.2,	
   varnames=c("dist\n(miles)", "climb\n(feet)", "time\n(hours)"))	
	
splom(~log(hills), cex.labels=1.2,	
   varnames=c("dist\n(log miles)", "climb\n(log feet)", 	
              "time\n(log hours)"))	

why log?  
- perhaps expect prediction error to be a fraction 
  of the predicted time (think: prediction of 15 minutes  
  as against a prediction of 3 hours) 
- long tails 
- marathon record not 26 X 4 minutes… 







plot(hills$dist,hills$time)	
identify(hills$dist,hills$time)	

> hills[18,]	
           dist climb     time	
Knock Hill    3   350 1.310833	
 	

actually an error - should be 0.31! 



plot(lm(time~dist+climb,data=hills),which=1:4)	



plot(lm(time~dist+climb,data=hills,subset=-18),which=1:4)	



how about an interaction? 

logHills <- log(hills)	
names(logHills) <- c("logDist", "logClimb", "logTime")	
	
hillsInt.lm <- lm(logTime~logDist*logClimb,	
data=logHills,subset=-18)	
summary(hillsInt.lm)	
par(mfrow=c(2,2))	
plot(hillsInt.lm,which=1:4)	
	

Coefficients:	
                 Estimate Std. Error t value Pr(>|t|)  	
(Intercept)      -2.47552    0.96528  -2.565   0.0156 *	
logDist           0.16854    0.49129   0.343   0.7339  	
logClimb          0.06724    0.13540   0.497   0.6231  	
logDist:logClimb  0.09928    0.06530   1.520   0.1389  	

??? 



> summary(lm(logTime~logDist+logClimb,data=logHills,subset=-18))	
	
Coefficients:	
            Estimate Std. Error t value Pr(>|t|)    	
(Intercept) -3.88155    0.28263 -13.734 1.01e-14 ***	
logDist      0.90924    0.06500  13.989 6.16e-15 ***	
logClimb     0.26009    0.04839   5.375 7.33e-06 ***	



Stack Loss Example 

Oxidation of Ammonia to Nitric Acid on Successive Days 
 
x1 airflow to the plant 
x2 temperature of the cooling water 
x3 concentration of nitric acid in the absorbing liquid 
 
y  10 X the percentage of ingoing ammonia that is lost as  
    unabsorbed nitric acids  





> m1 <- lm(stack.loss~Air.Flow+Water.Temp+Acid.Conc.)	
> summary(m1)	
	
Call:	
lm(formula = stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.)	
	
Residuals:	
    Min      1Q  Median      3Q     Max 	
-7.2377 -1.7117 -0.4551  2.3614  5.6978 	
	
Coefficients:	
            Estimate Std. Error t value Pr(>|t|)    	
(Intercept) -39.9197    11.8960  -3.356  0.00375 ** 	
Air.Flow      0.7156     0.1349   5.307  5.8e-05 ***	
Water.Temp    1.2953     0.3680   3.520  0.00263 ** 	
Acid.Conc.   -0.1521     0.1563  -0.973  0.34405    	
---	
	
Residual standard error: 3.243 on 17 degrees of freedom	
Multiple R-Squared: 0.9136, 	Adjusted R-squared: 0.8983 	
F-statistic:  59.9 on 3 and 17 DF,  p-value: 3.016e-09 	





Some odd patterns and outlying points. How come? 

1.  Some points may be entirely erroneous 

2.  We might not have the best functional form 

3.  The random error might not be normal 

4.  Some points may reflect changing conditions - 
perhaps the plant requires time to reach 
equilibrium after significant input changes 

focus on 1 and 2 to begin with. Lets try dropping #21.  



21 is the last day of measurement 
big input change, no change in output… 



> m2 <- lm(stack.loss~Air.Flow+Water.Temp+Acid.Conc.,subset=-21)	
> summary(m2)	
	
Call:	
lm(formula = stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., 	
    subset = -21)	
	
Residuals:	
    Min      1Q  Median      3Q     Max 	
-3.0449 -2.0578  0.1025  1.0709  6.3017 	
	
Coefficients:	
            Estimate Std. Error t value Pr(>|t|)    	
(Intercept) -43.7040     9.4916  -4.605 0.000293 ***	
Air.Flow      0.8891     0.1188   7.481 1.31e-06 ***	
Water.Temp    0.8166     0.3250   2.512 0.023088 *  	
Acid.Conc.   -0.1071     0.1245  -0.860 0.402338    	
---	
Residual standard error: 2.569 on 16 degrees of freedom	
Multiple R-Squared: 0.9488, 	Adjusted R-squared: 0.9392 	
F-statistic: 98.82 on 3 and 16 DF,  p-value: 1.541e-10 	



normal plot now a bit skew 

16 residuals show a pattern 

increasing resid size with yhat 



try log(y)… 

> m3 <- lm(log(stack.loss)~Air.Flow+Water.Temp+Acid.Conc.)	
> summary(m3)	
	
Call:	
lm(formula = log(stack.loss) ~ Air.Flow + Water.Temp + Acid.Conc.)	
	
Residuals:	
     Min       1Q   Median       3Q      Max 	
-0.29269 -0.09734 -0.03937  0.12290  0.36558 	
	
Coefficients:	
             Estimate Std. Error t value Pr(>|t|)    	
(Intercept) -0.948729   0.647721  -1.465 0.161247    	
Air.Flow     0.034565   0.007343   4.707 0.000203 ***	
Water.Temp   0.063465   0.020038   3.167 0.005632 ** 	
Acid.Conc.   0.002864   0.008510   0.337 0.740566    	
	
	
Residual standard error: 0.1766 on 17 degrees of freedom	
Multiple R-Squared: 0.9033, 	Adjusted R-squared: 0.8862 	
F-statistic: 52.92 on 3 and 17 DF,  p-value: 7.811e-09 	
	



R2 is down but the diagnostic plots look pretty good… 



Acid Concentration has shown negligible influence 
in all three models. Drop it? 

Three different modeling actions under consideration: 

A: Observation 21 in or out 

B: y or log y as the response 

C: Acid Concentration in or out 



# Obs. 
21 

log acid 
conc. 

R2 SSE/df Normal 
Plot 

Residual 
versus 
yHat 

1 in y in 0.91 10.5 21 low 1,2,3,4 
outside 

2 out y in 0.95 6.6 Curved 1,2,3,4 
outside 

3 in log y in 0.90 0.0059 OK OK 

4 in y out 0.91 10.5 21 low 1,2,3,4 
outside 

5 out y out 0.95 6.5 Curved 1,2,3,4 
outside 

6 in log y out 0.90 0.0056 21 high OK 

7 out log y in 0.92 0.0048 4 high OK 

8 out log y out 0.92 0.0046 4 high OK 

seems clear we should drop #21 and acid conc. 



if log(y) is the "correct" response, the error should 
increase linearly with y. Lets check this… 

"near replicates" 



Observ
ations 

SSE df MSE s Yhat s/Y 

5,6,7,8 2.8 3 0.93 1.0 21 5 

10, 
11,12, 
13,14 

 
6.8 

 
4 

 
1.70 

 
1.3 

 
12 

 
11 

15,16, 
17,18, 
19 

 
2.0 

 
4 

 
0.50 

 
0.7 

 
8 

 
9 

 
Pooled 

 
11.6 

 
11 

 
1.05 

 
1.02 

no evidence that error increase with y 
 
Also, MSE here is much smaller than, e.g., model 5 (MSE=6.5) 
Something is not right! (can use an F-test here) 







it seems that when air flow exceeds 60, the plant takes 
about a day to come to equilibrium 
 
"line-out" is the term used by plant operators 
 
This would suggest permanently dropping points 1, 3, 4, 
and 21 since they correspond to transient states 
 
Now revisit the log y and acid concentration issues… 



# Obs. 
21 

log acid 
conc. 

R2 SSE/df Normal 
Plot 

Residual 
versus 
yHat 

9 out y in 0.975 1.6 20 low curvature? 

10 out y out 0.973 1.6 OK curvature? 

11 out log y in 0.92 0.0032 20 high curvature? 

12 out log y out 0.92 0.0031 20 high curvature? 

1, 3, 4, and 21 removed 



model 9 



drop acid conc. again 
try adding airflow^2 

lm(formula = stack.loss ~ Air.Flow + Water.Temp + I(Air.Flow^2), 	
    subset = c(-1, -3, -4, -21))	
	
Residuals:	
    Min      1Q  Median      3Q     Max 	
-2.0177 -0.6530 -0.1252  0.5101  2.3429 	
	
Coefficients:	
                Estimate Std. Error t value Pr(>|t|)   	
(Intercept)   -15.409290  12.602668  -1.223  0.24315   	
Air.Flow       -0.069142   0.398419  -0.174  0.86490   	
Water.Temp      0.527804   0.150079   3.517  0.00379 **	
I(Air.Flow^2)   0.006818   0.003178   2.145  0.05139 . 	
	
Residual standard error: 1.125 on 13 degrees of freedom	
Multiple R-Squared: 0.9799, 	Adjusted R-squared: 0.9752 	
F-statistic: 210.8 on 3 and 13 DF,  p-value: 2.854e-11 	





probably makes no sense to go further 
 
Could try a factorial study of x1^2, x2^2, x1x2, log y, etc. 
 
SSE/df is now 1.26 compared with the "minimum" 1.05  



model selection in linear regression 

basic problem: how to choose between competing 
linear regression models 
 
model too small: "underfit" the data; poor predictions; 

   high bias; low variance 
 
model too big: "overfit" the data; poor predictions; 

   low bias; high variance 
 
model just right: balance bias and variance to get 

   good predictions 



Bias-Variance Tradeoff 

High Bias - Low Variance Low Bias - High Variance 

“overfitting” - modeling 
the random component Score function should 

embody the compromise 



model selection in regression has two facets: 
 

 1. assign a score to each model 
  
 2. search for models with good scores 



linear regression model scores 

consider the problem of selecting a "good" subset 
of k candidate predictors 

 

S ! 1,...k{ }

 

!S = X j : j " S{ }

 

!S,, ˆ ! S ,XS, ˆ r S (x)
true coefficients 

least squares estimates design matrix 

estimated regression function 

 

ˆ Y i(S) = ˆ r S (Xi)



 

R(S) = Ey,Y *

i=1

n

! ( ˆ Y i(S) "Yi
*)2

prediction risk: 

value of future observation at Xi 

goal: pick the model that minimizes R(S) 

 

ˆ R TR (S) = ˆ Y i(S) !Yi( )2

i=1

n

"

training error: 
bad estimate of risk! 



 

E ˆ R TR (S)( ) < R(S)

Theorem: The training error is a downward-biased  
estimate of the prediction risk: 

 

bias ˆ R TR (S)( ) = Ey
ˆ R TR (S)( ) ! R(S) = !2 Cov ˆ Y i,Yi( )

i=1

n

"

for linear models with |S| predictors: 

 

Cov ˆ Y i,Yi( )
i=1

n

! = S"#
2

tends to be 
large when 
the model is 

large 



 

Cp =
ˆ R TR (S) +

2 S ˆ ! "
2

obvious thing to do is estimate the bias and adjust! 

how well the model fits the 
training data; smaller is better 

complexity penalty; bigger 
model, bigger penalty 

"Mallows Cp statistic"  

often estimated from 
the "full" model 



Akaike Information Criterion is one alternative: 

 

AIC = lS ! S

where lS is the maximized log-likelihood  

(very similar to Cp in normal linear regression models) 

- can use cross-validation to estimate prediction risk 

- for linear regression, there are short cut formulae that 
can compute the CV estimate from a single (full) model  
fit 



AIC in R is multiplied by -2 (so smaller is better) 

 

AICR = !2lS + 2 S

for linear regression with normal errors, the log likelihood is: 

 

- n
2
log2! - n

2
log" 2 # 1

2" 2 y # X$ 2

plugging the MLE for : 

 

- n
2
log2! - n

2
log" 2 # 1

2" 2 RSS



 

AIC =  n log2! + n log" 2 + 1
" 2 RSS +2 S

Thus, if  is known: 

constant 

If  is unknown: 

 

AIC =  n log(RSS/n) +2S + const



Bayesian Information Criterion is one alternative: 

 

BIC = lS !
S
2
logn

where lS is the maximized log-likelihood  

Bayesian interpretation: suitably normalized, BIC 
scores can be interpreted as approximate posterior 
model probabilities: P(Sj | Data) 



Bayesian Criterion 
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• Typically impossible to compute analytically 

• All sorts of Monte Carlo approximations 



◗  Suppose M0 simplifies M1 by setting one parameter 
(say q1) to some constant (typically zero) 

◗  If p1(q2 | q1 = 0) = p0(q2) then:  

Savage-Dickey Density Ratio 

p(data | M0) 

p(data | M1) 
= 

p(q1 = 0 | M1, data) 

p(q1 = 0 | M1) 



Laplace Method for p(D|M) 
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Laplace cont. 
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• Tierney & Kadane (1986, JASA) show the approximation is O(n-1) 

• Using the MLE instead of the posterior mode is also O(n-1) 

• Using the expected information matrix in  is O(n-1/2) but convenient 
since often computed by standard software 

• Raftery (1993) suggested approximating      by a single Newton step 
starting at the MLE 

• Note the prior is explicit in these approximations 

!~



Monte Carlo Estimates of p(D|
M) 

!= """ dpDpDp )()|()(
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In practice has large variance 



Monte Carlo Estimates of p(D|M) 
(cont.) 

Draw iid 1,…, m from p(|D): 
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“Importance 
Sampling” 



Monte Carlo Estimates of p(D|M) 
(cont.) 
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Newton and Raftery’s “Harmonic Mean Estimator” 

Unstable in practice and needs modification 



p(D|M) from Gibbs Sampler 
Output 
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Suppose we decompose   into (1,2) such that p(1|
D,2) and p(2|D,1) are available in closed-form… 

First note the following identity (for any * ): 

Chib (1995) 

p(D|*) and p(*) are usually easy to evaluate. 

What about p(*|D)? 



p(D|M) from Gibbs Sampler 
Output 

The Gibbs sampler gives (dependent) draws from p
(1, 2 |D) and hence marginally from p(2 |D)
… 
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“Rao-Blackwellization” 



Bayesian Information Criterion 

  

 

SBIC (Mk ) = !SL ( ˆ " k;Mk ) !
dk
2

logn,    k = 1,…,K

• BIC is an O(1) approximation to p(D|M) 

• Circumvents explicit prior 

• Approximation is O(n-1/2) for a class of  priors 

called “unit information priors.” 

• No free lunch (Weakliem (1998) example) 

(SL is the negative log-likelihood) 

A Critique of the Bayesian Information Criterion for Model Selection.; By: WEAKLIEM, DAVID L.., Sociological Methods & Research, Feb99, Vol. 27 Issue 3, p359, 39p 







• Deviance is a standard measure of  model fit: 

• Can summarize in two ways…at posterior mean or mode: 

(1) 

or by averaging over the posterior: 

(2) 

(2) will be bigger (i.e., worse) than (1) 

Deviance Information Criterion 

)|(log2),( !! ypyD "=

))(ˆ,()(ˆ yyDyD !! =

)|),(()( yyDEyDavg !=



is a measure of  model complexity.  

• In the normal linear model pD(1) equals the number of  

parameters 

• More generally pD(1) equals the number of  unconstrained 

parameters 

• DIC =  

• Approximately equal to  

Deviance Information Criterion  

)()( ˆ
)1( yDyDp avgD !"=

)1()( Davg pyD +

))](ˆ,([ yyDE rep !



model search 

- forward stepwise 
- backward stepwise 
- all-subsets 
- genetic algorithms 
- stochastic search 

start with the empty model 
and add one variable at a time 
greedily 

start with the full model 
and delete one variable at a time 
greedily 

stepwise methods can get stuck at local modes 



Zheng-Loh 

1.  fit the full model with all d predictors and let: 

2.  Order the statistics in absolute value from largest  
      to smallest: 
 
 
3.  Let    be the value of j that minimizes 

4.  Choose as the final model, the regression with the 
        terms with the largest W's 

 

 

W j =
ˆ ! j

s ˆ e ( ˆ ! j )

  

 

W(1) ! W(2) !! ! W(d )

 

ˆ j 

 

RSS( j) + j ˆ ! 2 logn

 

ˆ ! 2 is the variance estimate from the full model 
RSS(j) is from the model using x(1),…,x(j) 



Computing: Variable Selection via Stepwise Methods 

•  Efroymson’s 1960 algorithm still the most widely used 



Efroymson 

•  F-to-Enter 

•  F-to-Remove 

•  Guaranteed to converge 

•  Not guaranteed to converge to the right model… 

} Distribution not 
even remotely 

like F 



Trouble 

•  Y = X1 – X2 

•  Y almost orthogonal to X1 and X2 

•  Forward selection and Efroymson pick X3 alone 



More Trouble 

•  Berk Example with 4 variables 

•  The forward and backward sequence is (X1, X1X2, X1X2 X4) 

•  The R2 for X1X2 is 0.015 

Variables Highest R2 

X1 0.01 

X2,X3 0.99 

X1,X2,X4 0.994 



Even More Trouble 

•  “Detroit” example, N=13, d=11 

•  First variable selected in forward selection is the first 
variable eliminated by backward elimination 

•  Best subset of size 3 gives RSS of 6.8 

•  Forward’s best set of 3 has RSS = 21.2; Backward’s 
gets 23.5 



Variable selection with pure noise using leaps 

y <- rnorm(100)	
xx <- matrix(rnorm(4000),ncol=40)	
dimnames(xx) <- list(NULL,paste("X",1:40,sep=""))	

library(leaps)	
xx.subsets <- regsubsets(xx, y, method="exhaustive", 
nvmax=3, nbest=1)	
subvar <- summary(xx.subsets)$which[3,-1]	
best3.lm <- lm(y ~ -1 + xx[, subvar])	
print(summary(best3.lm, corr=FALSE))	

or…bestsetNoise(m=100,n=40)	



run this experiment ten times: 
 
- all three significant at p<0.01   1 
- all three significant at p<0.05   3 
- two out of three significant at p<0.05  3 
- one out of three significant at p<0.05  1 





Bayesian Model Averaging   

•  If we believe that one of the candidate models 
generated the data, then the predictively optimal 
strategy is to average over all the models. 

•  If Q is the inferential target, Bayesian Model Averaging 
(BMA) computes: 

•  Substantial empirical evidence that BMA provides 
better prediction than model selection 




