get some extra room on the left
par(mar=c(5,5,4,2))

make up some happiness data, as so many seem to do
happyday<-data.frame(Monday=c(2.3,3.4),Tuesday=c(2.8,3.3),Wednesday=c(3.2,3.1),
Thursday=c(3.6,2.8),Friday=c(4.2,2.6),Saturday=c(4.5,2.9),Sunday=c(4.1,2.8))
happylabels<-c("Utterly dashed","Rather mopey","Indifferent","Somewhat elated","Euphoric")

barp(happyday,names.arg=names(happyday),legend.lab=c("Slaves","Unemployed"),
legend.pos="e",col=c("#ee7700","#3333ff"),main="9AM happiness by weekday",
xlab="Day of week",ylab="Happiness rating",ylim=c(1,5),staxx=TRUE,staxy=TRUE,
height.at=1:5,height.lab=happylabels,cex.axis=0.9,cylindrical=TRUE,
shadow=TRUE)
test.df<-data.frame(a=rnorm(80)+4,b=rnorm(80)+4,c=rep(LETTERS[1:4],each=20),
d=rep(rep(letters[1:4],each=4),5))
first use the default values
brkdn.plot("a","c","d",test.df,pch=1:4,col=1:4)
now jazz it up a bit using medians and median absolute deviations
and some enhancements
bp<-brkdn.plot("a","c","d",test.df,main="Test of the breakdown plot",
mct="median",md="mad",xlab="Temperature range", ylab="Cognition",
es<-emptyspace(bp)
legend(es,legend=c("Sydney","Gosford","Karuah","Brisbane"),pch=1:4,
col=1:4,lty=1:4,xjust=0.5,yjust=0.5)
Percentage high school completion by over 25s

1990

Anchorage AK

2000

Anchorage AK
testcp<-list('',40)
for(i in 1:40) testcp[[i]]<-rnorm(sample(1:8,1)*50)
segs<-get.segs(testcp)
centipede.plot(segs,main="Test centipede plot",vgrid=0)
testlen<-rnorm(24)*2+5
testpos<-0:23+morm(24)/4
clock24.plot(testlen,testpos,main="Test Clock24 (lines)",show.grid=FALSE,
line.col="green",lwd=3)
if(dev.interactive()) par(ask=TRUE)
now do a 'daylight' plot
clock24.plot(testlen[7:19],testpos[7:19],
main="Test Clock24 daytime (symbols)",
point.col="blue",rp.type="s",lwd=3)
```r
xy.mat <- cbind(sample(1:10, 200, TRUE), sample(1:10, 200, TRUE))
count.overplot(xy.mat, main = "count.overplot",
               xlab = "X values", ylab = "Y values")
```

![count.overplot](image)
```r
data(mtcars)
mysubset <- mtcars[substr(dimnames(mtcars)[[1]], 1, 1) == "M", c("mpg", "hp", "wt", "disp")]
diamondplot(mysubset)
```
disptest<-matrix(rnorm(200),nrow=20)
disptest.means<-rowMeans(disptest)
row.order<-order(disptest.means)
se.disptest<-unlist(apply(disptest,1,std.error))
plot(disptest.means[row.order],main="Dispersion as error bars",
ylim=c(min(disptest.means-se.disptest),max(disptest.means+se.disptest)),
xlab="Occasion",ylab="Value")
dispersion(1:20,disptest.means[row.order],se.disptest[row.order])
plot(disptest.means[row.order],main="Dispersion as confidence band",
ylim=c(min(disptest.means-se.disptest),max(disptest.means+se.disptest)),
xlab="Occasion",ylab="Value")
dispersion(1:20,disptest.means[row.order],se.disptest[row.order],type="l",
fill="#eeccce",lty=2)
remember to redraw the points
points(disptest.means[row.order])

Dispersion as confidence band
iucn.df <- data.frame(area=c("Africa","Asia","Europe","N&C America", "S America","Oceania"), threatened=c(5994,7737,1987,4716,5097,2093))
fan.plot(iucn.df$threatened,
labels=paste(iucn.df$area,iucn.df$threatened,sep="-"),
main="Threatened species by geographical area",ticks=276)
plot(1:5,type="n",main="Floating Pie test",xlab="",ylab="",axes=FALSE)
box()
polygon(c(0,0,5,5,5),c(0,4,3,1,3),border="#44aaff",col="#44aaff")
floating.pie(1.7,3,c(2,4,4,2,8),radius=0.5,
col=c("#ff0000","#80ff00","#00ffff","#44bbff","#8000ff"))
floating.pie(3.1,3,c(1,4,5,2,8),radius=0.5,
col=c("#ff0000","#80ff00","#00ffff","#44bbff","#8000ff"))
floating.pie(4,1.5,c(3,4,6,7),radius=0.5,
col=c("#ff0066","#00cc88","#44bbff","#8000ff"))
draw.circle(3.921,radius=0.04,col="white")
draw.circle(3.921,radius=0.04,col="white")
draw.circle(3.921,radius=0.04,col="white")
draw.circle(4.23,radius=0.04,col="white")
draw.circle(4.07,2.55,radius=0.04,col="white")
draw.circle(4.03,2.85,radius=0.04,col="white")
text(c(1.7,3.1,4),c(3.7,3.7,3.7),c("Pass","Pass","Fail"))
plot(runif(20,-1,1),runif(20,-1,1),xlim=c(-1,1.5),main="Demo of fullaxis",
 xlab="X",ylab="Y",axes=FALSE)
fullaxis(1,col="red")
fullaxis(2,col="blue",col.axis="blue")
fullaxis(4,at=c(-0.5,0,0.5),labels=c("Negative","Zero","Positive"),pos=1.2,
col="green",las=1)
add a top line to complete the "box"
xylim<par("usr")
segments(xylim[1],xylim[4],xylim[2],xylim[4])
Demo of fullaxis

X

Y

-1.0 -0.5 0.0 0.5 1.0 1.5

-0.5 0.0 0.5

Negative

Zero

Positive
twogrp<-c(rnorm(10)+4,rnorm(10)+20)
gap.barplot(twogrp,gap=c(8,16),xlab="Index",ylab="Group values",main="Barplot with gap")
gap.barplot(twogrp,gap=c(8,16),xlab="Index",ylab="Group values",main="Horizontal barplot with gap")
this example is from a haplotype mapping problem submitted by Mao Jianfeng

```r
# Not run:
hapIntList <-
getIntersectList(3,xnames=c("hap.Pd","hap.Pt","hap.Py"))
# enter the data as follows:
# Number of elements in hap.Pd - 1: 27.586
# Number of elements in hap.Pt - 1: 20.689
# Number of elements in hap.Py - 1: 31.035
# Number of elements in hap.Pd-hap.Pt - 1: 10.345
# Number of elements in hap.Pd-hap.Py - 1: 10.345
# Number of elements in hap.Pt-hap.Py - 1: 0
# Number of elements in hap.Pd-hap.Pt-hap.Py - 1: 0
# Total number of elements - 1: 100
# End(Not run)
```

```r
hapIntList <-
structure(list(structure(c(27.586, 20.689, 31.035),
structure(c(10.345, 10.345, 0),
structure(0, .Names = "hap.Pd-hap.Pt-hap.Py"),100),
class = "intersectList")
```

```r
intersectDiagram(hapIntList)
```

Intersection Diagram

The diagram visualizes the intersections between haplotypes `hap.Pd`, `hap.Pt`, and `hap.Py` with their respective counts.
test.df<-data.frame(Age=rnorm(100,25,10),
 Sex=sample(c("M","F"),100,TRUE),
 Marital=sample(c("D","M","S","W"),100,TRUE),
 Employ=sample(c("Full Time","Part Time","Unemployed"),100,TRUE))

test.col<-list(Overall="gray",Employ=c("#1affd8","#caeecc","#f7b3cc"),
 Marital=c("mediumpurple","orange","tan","lightgreen"),Sex=c("pink","lightblue"))

hierobarp(formula=Age~Sex+Marital+Employ,data=test.df,ylab="Mean age (years)",
 main="Show only the final breakdown",errbars=TRUE,col=test.col$Sex)
set up functions for 20 and 80 percentiles - must be offsets, not limits
q20<-function(x,na.rm=TRUE) return(mean(x)-quantile(x,probs=0.2,na.rm=TRUE))
q80<-function(x,na.rm=TRUE) return(quantile(x,probs=0.8,na.rm=TRUE)-mean(x))
show the asymmetric dispersion measures
hierobarp(formula=Age~Sex+Marital+Employ,data=test.df,ylab="Mean age (years)",
main="Use median and quantiles for dispersion",mct=median,lmd=q20,umd=q80,
errbars=TRUE,col=test.col$Sex)
start a wide plot window for this one
x11(width=10)
hierobarp(formula=Age~Sex+Marital+Employ,data=test.df,ylab="Mean age (years)",
main="Show the entire hierarchical breakdown",col=test.col,showall=TRUE,
showbrklab=TRUE,mar=c(5,4,4,8))
Show the entire hierarchical breakdown
Use median and quantiles for dispersion
create a matrix where each row represents an element and
a 1 (or TRUE) in each column indicates that the element is a member
of that set.
druguse<-matrix(c(sample(c(0,1),200,TRUE),
sample(c(0,1),200,TRUE),
sample(c(0,1),200,TRUE),
sample(c(0,1),200,TRUE)),ncol=4)
colnames(druguse)<-c("Alc","Tob","THC","Amp")
druglist<-makeIntersectList(druguse)
first display it as counts
intersectDiagram(druglist)
then as percent with non.members, passing the initial matrix
intersectDiagram(druguse,pct=TRUE,show.nulls=TRUE)
manufacture a matrix of orientations in radians
o<-matrix(rep(pi*seq(0.1,0.8,by=0.1),7),ncol=8,byrow=TRUE)
m<-matrix(rnorm(56)+4,ncol=8,byrow=TRUE)

get an empty plot of approximately 1:1 aspect ratio
plot(0,xlim=c(0.7,8.3),ylim=c(0.7,7.3),type="n")
vectorField(o,m,vecspec="rad")

the scaling usually has to be worked out by trial and error
lengthKey(0.3,-0.5,c(0,5,10),0.24)
l <- list(runif(10)*10,1:10,c(1,1,1,1,4,8))
multhist(l)
windagg<-matrix(c(8,0,0,0,0,0,0,0,4,6,2,1,6,3,0,4,2,8,5,3,5,2,1,1, 5,5,2,4,1,4,1,2,1,2,4,0,3,1,3,1),nrow=5,byrow=TRUE)

oz.windrose(windagg)
pieval<-c(2,4,6,8)
pielabels<-
c("We hate\n pies","We oppose\n pies","We don't\n care","We just love pies")
pie3D(pieval, radius=0.9, labels=pielabels, explode=0.1, main="3D PIE OPINIONS")

3D PIE OPINIONS

We hate pies
We oppose pies
We don't care
We just love pies
sex <- sample(c("M","F"), 100, TRUE)
hair <- sample(c("Blond","Black","Brown","Red"), 100, TRUE)
eye <- sample(c("Blue","Black","Brown","Green"), 100, TRUE)
charac <- data.frame(sex=sex, hair=hair, eye=eye)
characlist <- makeDendrite(charac)
plot.dendrite(characlist, names(charac), main="Test dendrogram", cex=0.8)
y <- runif(10)
err <- runif(10)
plotCI(1:10, y, err)
plotCI(1:10, y, err, lwd = 2, col = "red", scol = "blue")
err.x <- runif(10)
err.y <- runif(10)
plotCI(1:10, y, err.y, pt.bg = par("bg"), pch = 21)
plotCI(1:10, y, err.x, pt.bg = par("bg"), pch = 21, err = "x", add = TRUE)
data(warpbreaks)
attach(warpbreaks)
wmeans <- by(breaks, tension, mean)
wsd <- by(breaks, tension, sd)
```r
labs <- sample(LETTERS, replace = TRUE, size = 10)
plotCI(1:10, y, err, pch = NA, gap = 0.02)
text(1:10, y, labs)
```
testlen<-c(rnorm(36)*2+5)
testpos<-seq(0,350,by=10)
polar.plot(testlen,testpos,main="Test Polar Plot",lwd=3,line.col=4)
polar.plot(testlen,testpos,main="Test Clockwise Polar Plot", start=90,clockwise=TRUE,lwd=3,line.col=4)
reset the margins
par(mar=c(5,4,4,2))
xy.pop<-c(3.2,3.5,3.6,3.6,3.5,3.6,3.5,3.5,3.9,3.7,3.9,3.9,3.5,3.2,2.8,2.2,1.8, 1.5,1.3,0.7,0.4)
xx.pop<-c(3.2,3.4,3.5,3.5,3.5,3.7,4.3,3.8,3.9,3.6,3.2,2.5,2.1,1.7,1.5, 1.3,1.0,0.8)
agelabels<-c("0-4","5-9","10-14","15-19","20-24","25-29","30-34", "35-39","40-44","45-49","50-54","55-59","60-64","65-69","70-74", "75-79","80-84","85+")
xycol=color.gradient(c(0,0,0.5,1),c(0,0,0.5,1),c(1,1,0.5,1),18)
xxcol=color.gradient(c(1,1,0.5,1),c(0.5,0.5,0.5,1),c(0.5,0.5,0.5,1),18)
par(mar=pyramid.plot(xy.pop,xx.pop,labels=agelabels,
main="Australian population pyramid 2002",xycol=xycol,xxcol=xxcol))
first a moderate drinker with frequent bigger sessions
qnt<-sample(0:5,365,TRUE,prob=c(0.02,0.1,0.4,0.3,0.1,0.08))
qtdates<-seq(as.Date("2007-01-01"),as.Date("2007-12-31"),by=1)
qt.plot(qnt,as.numeric(qtdates),xlab="Number of days interval",
ylab="Standard drinks per session")
now add monthly bigger sessions and notice how this
qnt[c(30,60,90,120,150,180,210,240,270,300,330,360)]<-rep(4:5,length.out=12)
qt.plot(qnt,as.numeric(qtdates),xlab="Number of days interval",
ylab="Standard drinks per session")
posmat<-matrix(sample(2:9,30,TRUE),nrow=3)
radial.plot(posmat,labels=paste("X",1:10,sep=""),rp.type="p",
main="Spiderweb plot",line.col=2:4,show.grid=FALSE,lwd=1:3,
radial.lim=c(0,10))
ions<-c(3.2,5,1,3.1,2.1,4.5)
ion.names<-c("Na","Ca","Mg","Cl","HCO3","SO4")
radial.plot(ions,labels=ion.names,rp.type="p",main="Dissolved ions in water",
grid.unit="meq/l",radial.lim=c(0,5),poly.col="yellow")
par(xpd=oldpar$xpd,mar=oldpar$mar,pty=oldpar$pty)
reset the margins
par(mar=c(5,4,4,2))
x <- runif(20)
y <- runif(20)
revaxis(x,y,yside=4)
cat1 <- sample(c("None","Low","Medium","High"), 40, TRUE)
cat2 <- sample(c("None","Low","Medium","High"), 40, TRUE)
cat3 <- sample(c("None","Low","Medium","High"), 40, TRUE)

cats <- data.frame(cat1, cat2, cat3)

bhcol <- list(c("#ff8080","#dddd80","#80ff80","#8080ff"), c("red","green","lightblue","yellow"), c("#ffffff","#bbbbbb","#999999","#666666"))
sizetree(hcats, col = bhcol, main = "Hierarchical count chart")
spread labels out in the x dimension using defaults
x<-sort(rnorm(10))
y<-rnorm(10)/10
plot(x,y,ylim=c(-1,1),type="p")
nums<-c("one","two","three","four","five","six","seven","eight","nine","ten")
spread.labels(x,y,nums)

plot(rep(1, 9), fpkids$Female, xlim = c(0.8, 2.2), ylim = range(c(fpkids$Female, fpkids$Male)), xlab = "Sex", ylab = "Preference rating", main = "Children's food preferences by sex", col = "red")

axis(1, at = 1:2, labels = c("Female", "Male"))
points(rep(2, 9), fpkids$Male, col = "blue", pch = 2)

spread.labels(rep(1:2, each = 9), c(fpkids$Female, fpkids$Male), fpkids$Food, between = TRUE, linecol = c("red", "blue"))
sample_size<-c(500,-72,428,-94,334,-45,289)
totals<-c(TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE)
labels<-c("Contact list","Uncontactable","","Declined","","Ineligible","Final sample")
staircase.plot(sample_size,totals,labels,main="Acquisition of the sample", total.col="gray",inc.col=2:4,bg.col="#e5e5e5",direction="s")
```r
triax.return <- triax.plot(data.frame(bottom=0.4, right=0.3, left=0.3),
main="Triax ablines", no.add=FALSE)
triax.abline(l=0.3, col="red")
triax.abline(r=0.3, col="green")
triax.abline(b=0.4, col="blue")
par(triax.return$oldpar)
```
data(soils)
triax.plot(soils[1:10,],main="DEFAULT")
triax.plot(soils[1:10,],main="PERCENTAGES (Counterclockwise axes)",
tick.labels=list(l=seq(10,90,by=10),r=seq(10,90,by=10),b=seq(10,90,by=10)),
pch=3,cc.axes=TRUE)
triax.return<-triax.plot(soils[1:6,],main="GRID AND LEGEND",
show.grid=TRUE,show.legend=TRUE,col.symbols=1:6,pch=4)
triax.plot changes a few parameters
par(triax.return$oldpar)
twoord.plot(2:10, seq(3, 7, by=0.5) + rnorm(9),
1:15, rev(60:74) + rnorm(15), xlab="Sequence",
ylab="Ascending values", rylab="Descending values",
main="Plot with two ordinates - points and lines")
twoord.plot(2:10,seq(3,7,by=0.5)+rnorm(9),
1:15,rev(60:74)+rnorm(15),xlab="Sequence",
ylab="Ascending values",ylab="Descending values",
main="Plot with two ordinates - bars on the left",
type=c("bar","l"),lcol=3,rcol=4)

Plot with two ordinates - bars on the left
twoord.plot(2:10, seq(3,7,by=0.5)+rnorm(9),
1:15,rev(60:74)+rnorm(15), xlab="Sequence",
ylab="Ascending values", rlab="Descending values",
main="Plot with two ordinates - bars on the right",
type=c("b","bar"), lcol=2, rcol=NA, halfwidth=0.2)
xhist<-hist(rnorm(100),plot=FALSE)
xdens<-dnorm(seq(-2,2,by=0.05))
twoord.plot(xhist$mids,xhist$counts,seq(-2,2,by=0.05),
xdens,type=c("bar","l"),lcol=4,rcol=2,ylab="Counts",
rylab="Density",main="Histogram and density curve",
halfwidth=0.2)