Computing the Marginal Likelihood

David Madigan
Bayesian Criterion

\[p(M_k \mid D) \propto p(D \mid M_k) p(M_k) \]

\[= p(M_k) \int p(D \mid \theta_k, M_k) p(\theta_k \mid M_k) d\theta_k \]

• Typically impossible to compute analytically
• All sorts of Monte Carlo approximations
Laplace Method for $p(D|M)$

let $l(\theta) = \frac{\log(L(\theta))}{n} + \frac{\log p(\theta)}{n}$

(i.e., the log of the integrand divided by n)

then $p(D) = \int e^{nl(\theta)} d\theta$

Laplace’s Method:

$p(D) \approx \int \exp[nl(\bar{\theta}) - n(\theta - \bar{\theta})^2/(2\sigma^2)] d\theta$

where $\sigma^2 = -1/l'''(\bar{\theta})$ and

$\bar{\theta}$ is the posterior mode
Laplace cont.

\[
p(D) = \int \exp[nl(\tilde{\theta}) - n(\theta - \tilde{\theta})^2 / (2\sigma^2)]d\theta
\]

\[
\approx \sqrt{2\pi} \sigma n^{-1/2} \exp\{nl(\tilde{\theta})\}
\]

• Tierney & Kadane (1986, JASA) show the approximation is \(O(n^{-1})\)
• Using the MLE instead of the posterior mode is also \(O(n^{-1})\)
• Using the expected information matrix in \(\sigma\) is \(O(n^{-1/2})\) but convenient since often computed by standard software
• Raftery (1993) suggested approximating \(\tilde{\theta}\) by a single Newton step starting at the MLE
• Note the prior is explicit in these approximations
Monte Carlo Estimates of $p(D \mid M)$

$$p(D) = \int p(D \mid \theta) p(\theta) d\theta$$

Draw iid $\theta_1, \ldots, \theta_m$ from $p(\theta)$:

$$\hat{p}(D) = \frac{1}{m} \sum_{i=1}^{m} p(D \mid \theta^{(i)})$$

In practice has large variance
Monte Carlo Estimates of $p(D|M)$ (cont.)

Draw iid $\theta_1, \ldots, \theta_m$ from $p(\theta|D)$:

$$
\hat{p}(D) = \frac{\sum_{i=1}^m w_i p(D|\theta^{(i)})}{\sum_{i=1}^m w_i} \quad \text{“Importance Sampling”}
$$

$$
w_i = \frac{p(\theta^{(i)})}{p(\theta^{(i)}|D)} = \frac{p(\theta^{(i)}) p(D)}{p(D|\theta^{(i)}) p(\theta^{(i)})}
$$
Monte Carlo Estimates of $p(D | M)$ (cont.)

$$
\hat{p}(D) = \frac{\sum_{i=1}^{m} \frac{p(D)}{p(D | \theta^{(i)})} p(D | \theta^{(i)})}{\sum_{i=1}^{m} \frac{p(D)}{p(D | \theta^{(i)})}}
$$

$$
= \left\{ \frac{1}{m} \sum_{i=1}^{m} p(D | \theta^{(i)})^{-1} \right\}^{-1}
$$

Newton and Raftery’s “Harmonic Mean Estimator”

Unstable in practice and needs modification
$p(D \mid M)$ from Gibbs Sampler Output

First note the following identity (for any θ^*):

$$p(D) = \frac{p(D \mid \theta^*) p(\theta^*)}{p(\theta^* \mid D)}$$

$p(D \mid \theta^*)$ and $p(\theta^*)$ are usually easy to evaluate.

What about $p(\theta^* \mid D)$?

Suppose we decompose θ into (θ_1, θ_2) such that $p(\theta_1 \mid D, \theta_2)$ and $p(\theta_2 \mid D, \theta_1)$ are available in closed-form...

Chib (1995)
\(p(D | M) \) from Gibbs Sampler Output

\[
p(\theta_1^*, \theta_2^* | D) = p(\theta_2^* | D, \theta_1^*) p(\theta_1^* | D)
\]

The Gibbs sampler gives (dependent) draws from \(p(\theta_1, \theta_2 | D) \) and hence marginally from \(p(\theta_2 | D) \)…

\[
p(\theta_1^* | D) = \int p(\theta_1^* | D, \theta_2) p(\theta_2 | D) d\theta_2 \\
\approx \frac{1}{G} \sum_{g=1}^{G} p(\theta_1^* | D, \theta_2^{(g)})
\]

“Rao-Blackwellization”
What about 3 parameter blocks...

\[
p(\theta_1^*, \theta_2^*, \theta_3^* \mid D) = p(\theta_3^* \mid D, \theta_1^*, \theta_2^*) p(\theta_2^* \mid D, \theta_1^*) p(\theta_1^* \mid D)
\]

\[
p(\theta_2^* \mid D, \theta_1^*) = \int p(\theta_2^* \mid D, \theta_1^*, \theta_3) p(\theta_3 \mid D, \theta_1^*) d\theta_3 \\
\approx \frac{1}{G} \sum_{g=1}^{G} p(\theta_2^* \mid D, \theta_1^*, \theta_3^{(g)})
\]

To get these draws, continue the Gibbs sampler sampling in turn from:

\[
p(\theta_2 \mid D, \theta_1^*, \theta_3) \quad \text{and} \quad p(\theta_3 \mid D, \theta_1^*, \theta_2)
\]
\[p(D | M) \text{ from Metropolis Output} \]

\[\pi(\theta | y) \propto \pi(\theta) f(y | \theta) \ldots \text{posterior density} \]
\[\{\theta^{(1)}, \ldots, \theta^{(M)}\} \text{ generated by Metropolis-Hastings} \]
\[\text{with proposal density } q(\theta, \theta') \text{ and acceptance prob:} \]

\[\alpha(\theta, \theta') = \min\left\{ 1, \frac{\pi(\theta')f(y | \theta')}{\pi(\theta)f(y | \theta)} \frac{q(\theta', \theta)}{q(\theta, \theta')} \right\} \]

Chib and Jeliazkov, JASA, 2001
\(p(D | M) \) from Metropolis Output

\[
\alpha(\theta, \theta') q(\theta, \theta') \pi(\theta | y) = \alpha(\theta', \theta) q(\theta', \theta) \pi(\theta' | y)
\]

\[
\int \alpha(\theta, \theta') q(\theta, \theta') \pi(\theta | y) d\theta = \int \alpha(\theta', \theta) q(\theta', \theta) \pi(\theta' | y) d\theta
\]

\[
\pi(\theta' | y) = \frac{\int \alpha(\theta, \theta') q(\theta, \theta') \pi(\theta | y) d\theta}{\int \alpha(\theta', \theta) q(\theta', \theta) d\theta}
\]

\[
= \frac{E_1 \{ \alpha(\theta, \theta') q(\theta, \theta') \}}{E_2 \{ \alpha(\theta', \theta) \}}
\]

\[
= M^{-1} \sum_{g=1}^{M} \alpha(\theta^{(g)}, \theta') q(\theta^{(g)}, \theta')
\]

\[
\approx J^{-1} \sum_{j=1}^{J} \alpha(\theta', \theta^{(j)})
\]
Bayesian Information Criterion

\[S_{BIC}(M_k) = 2S_L(\hat{\theta}_k; M_k) + d_k \log n, \quad k = 1, \ldots, K \]

\((S_L\) is the negative log-likelihood)

• BIC is an \(O(1)\) approximation to \(p(D|M)\)

• Circumvents explicit prior

• Approximation is \(O(n^{-1/2})\) for a class of priors called “unit information priors.”

• No free lunch (Weakliem (1998) example)
Srole (1956): "It's hardly fair to bring a child into the world now the way things look for the future." The data are from the 1993-94 General Social Survey; respondents were given the options of agreeing or disagreeing, and the few who could not choose are excluded from the analysis. The sample of 2,266 valid responses is composed of 44.0

\[
\log(n_{ij}) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \Theta x_3. \tag{4}
\]

In this parameterization, \(x_1\) is a dummy variable that is zero in row 1 and one in row 2, \(x_2\) is a dummy variable that is zero in column 1 and one in column 2, and \(x_3\) is a dummy variable that is one in column 2 of row 2 and zero otherwise. The maximum likelihood estimate of \(\Theta\) is the logarithm of the observed odds ratio \((n_{11}n_{22})/(n_{12}n_{21})\), so another way to put the question is to ask if \(\Theta\) is equal to zero.

The sample contains 412 men who agree with the statement, 583 men who disagree, 584 women who agree, and 687 women who disagree. The \(L^2\) for the model of independence is 4.68 with one degree of
Figure 1: Bayes Factors for Model of No Association in Anoma by Gender Table: Normal Prior Distribution With Mean Zero

about 4.0 (the exact figure is 4.07). With this prior distribution, the 95 percent range for possible values of the odds ratio would extend from 1/2,914 to 2,914, whereas the 50 percent range would extend from 1/14.7 to 14.7. In other words, adopting this prior distribution is equivalent to saying that if there is any association between the variables, there is a 50 percent chance that the absolute value of the odds ratio will be more than 14.7 or less than 1/14.7. As discussed above,
Deviance Information Criterion

• Deviance is a standard measure of model fit:
 \[D(y, \theta) = -2 \log p(y | \theta) \]

• Can summarize in two ways...at posterior mean or mode:

 (1) \[D_{\hat{\theta}}(y) = D(y, \hat{\theta}(y)) \]

 or by averaging over the posterior:

 (2) \[D_{\text{avg}}(y) = E(D(y, \theta) | y) \]

(2) will be bigger (i.e., worse) than (1)
Deviance Information Criterion

\[p_D^{(1)} = D_{\text{avg}}(y) - D_{\hat{\theta}}(y) \]

is a measure of model complexity.

• In the normal linear model \(p_D^{(1)} \) equals the number of parameters

• More generally \(p_D^{(1)} \) equals the number of unconstrained parameters

• DIC = \(D_{\text{avg}}(y) + p_D^{(1)} \)

• Approximately equal to \(E[D(y^{\text{rep}}, \hat{\theta}(y))] \)
Score Functions on Hold-Out Data

• Instead of penalizing complexity, look at performance on hold-out data

• Note: even using hold-out data, performance results can be optimistically biased

• Pseudo-hold-out Score: \(\prod_{i=1}^{n} [y_i | y_{-i}] \)

Recall: \(\frac{1}{[y_i | y_{-i}]} \equiv 1 \int \frac{1}{[y_i | y_{-i}, \theta]}[\theta | y]d\theta \)
Checks Based on Individual Observations

Consider data y_1, \ldots, y_I and parameters θ under the assumed model

Consider these ‘checking functions’

1. the residual: $y_i - E(Y_i)$

2. the standardised residual: $(y_i - E(Y_i)) / \sqrt{V(Y_i)}$

3. the chance of getting a more extreme observation: $\min(p(Y_i < y_i), p(Y_i \geq y_i))$

4. the chance of getting a more ‘surprising’ observation: $p(Y_i : p(Y_i) \leq p(y_i))$

5. the predictive ordinate of the observation: $p(y_i)$
Test Data?

1. Separate evaluation data available.

\[p(Y_i | x) = \int p(Y_i | \theta) p(\theta | x) d\theta \]

ith test observation
training data

2. No separate evaluation data available

\[p(Y_i | y \setminus i) \]

“cross-validation”

\[\frac{1}{p(y_i | y \setminus i)} = \int \frac{1}{p(y_i | y \setminus i | \theta)} p(\theta | y) d\theta \]

See BUGS Manual