additional notes on survival analysis
Residuals

• Not straightforward to define residuals for binary outcomes

• One possibility: \(r_i = \delta_i - \hat{H}(t_i) \)
 "martingale residual"

\[\text{max}=1 \text{ but can be arbitrarily negative} \]
Fleming and Harrington (1991) showed that if:

\[h(t) = h_0(t)\phi(x^*)\exp(\beta^T X) \]

unknown function of a covariate

then:

\[E[R \mid X^*] \approx [\phi(X^*) - \bar{\phi}] \sum \frac{\delta_i}{n} \]

so, plots of the martingale residuals against individual covariates should be linear if the model is correct
Deviance Residuals

• Behave like residuals from ordinary linear regression
• Should be symmetrically distributed around 0 and have standard deviation of 1.0.
• Negative for observations with longer than expected observed survival times.
• Plot deviance residuals against covariates to look for unusual patterns.
Schoenfeld Residuals

• Schoenfeld (1982) proposed the first set of residuals for use with Cox regression packages

• Instead of a single residual for each individual, there is a separate residual for each individual *for each covariate*

• Based on the individual contributions to the derivative of the log partial likelihood (see chapter 6 in Hosmer and Lemeshow for more math details, p.198-199)

• Note: Schoenfeld residuals are not defined for censored individuals.
Where K is the covariate of interest, the Schoenfeld residual is the covariate-value, X_{ik}, for the person (i) who actually died at time t_i minus the expected value of the covariate for the risk set at t_i (=a weighted-average of the covariate, weighted by each individual’s likelihood of dying at t_i).

$$\text{residual} = x_{ik} - \sum_{i=1}^{j \in R(t_i)} x_{kj} p_j$$

Plot Schoenfeld residuals against time to evaluate PH assumption.
cox <- coxph(Surv(days,1-censor) ~ trmt, foo)
residuals(cox)
residuals(cox, type="scaledsch")
print(cox.zph(cox))
VA lung cancer data

- treatment: standard or test
- celltype: one of four types
- Karnofsky score: higher is healthier
- diagnosis: time since diagnosis
- age: in years
- therapy: prior therapy yes or no
(VA.cox <- coxph(Surv(stime, status) ~ treat + age + Karn + diag.time + cell + prior, data=VA))

Call:
coxph(formula = Surv(stime, status) ~ treat + age + Karn + diag.time + cell + prior, data = VA)

 coef exp(coef) se(coef) z p
treat2 2.95e-01 1.343 0.20755 1.4194 1.6e-01
treat1 9.39e-01 2.576 0.21374 4.3991 1.0e-05
age -8.71e-03 0.991 0.00930 -0.9361 3.5e-01
Karn -3.28e-02 0.968 0.00551 -5.9580 2.6e-09
diag.time 8.13e-05 1.000 0.00914 0.0089 9.9e-01
cell2 8.62e-01 2.367 0.27528 3.1297 1.7e-03
cell3 1.20e+00 3.307 0.30092 3.9747 7.0e-05
cell4 4.01e-01 1.494 0.28269 1.4196 1.6e-01
prior10 7.16e-02 1.074 0.23231 0.3082 7.6e-01
prior1 1.59e-01 1.658 0.17758 0.9073 3.6e-01

Likelihood ratio test=62.1 on 8 df, p=1.8e-10 n= 137
```
(VA.coxs <- coxph(Surv(stime,status) ~ treat + age + Karn + diag.time + strata(cell) + prior, data=VA))

<table>
<thead>
<tr>
<th></th>
<th>coef</th>
<th>exp(coef)</th>
<th>se(coef)</th>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>treat2</td>
<td>0.286</td>
<td>1.331</td>
<td>0.210</td>
<td>1.36</td>
<td>1.7e-01</td>
</tr>
<tr>
<td>age</td>
<td>-0.012</td>
<td>0.988</td>
<td>0.009</td>
<td>-1.20</td>
<td>2.3e-01</td>
</tr>
<tr>
<td>Karn</td>
<td>-0.038</td>
<td>0.962</td>
<td>0.006</td>
<td>-6.45</td>
<td>1.1e-10</td>
</tr>
<tr>
<td>diag.time</td>
<td>-0.003</td>
<td>0.997</td>
<td>0.009</td>
<td>-0.38</td>
<td>7.0e-01</td>
</tr>
<tr>
<td>prior10</td>
<td>0.169</td>
<td>1.184</td>
<td>0.236</td>
<td>0.72</td>
<td>4.7e-01</td>
</tr>
</tbody>
</table>

Likelihood ratio test=44.3 on 5 df, p=2.04e-08  n= 137

plot(survfit(VA.coxs),lty=1:4, col=2:5, ylab="prob(Survival)")
legend(800,0.8, c("squamous", "small", "adeno", "large"),
       lty=1:4, col=2:5)

plot(survfit(VA.coxs),fun="cloglog", lty=1:4, col=2:5)
legend(300,0.05, c("squamous", "small", "adeno", "large"),
       lty=1:4, col=2:5)
```
same thing on a log scale...
same thing on a log(-log) scale...

some evidence of non-proportionality
check proportionality for Karnofsy score...

cKarn <- factor(cut(VA$Karn, 5))
VA.cox1 <- coxph(Surv(stime, status) ~ strata(cKarn)+cell, data=VA)
plot(survfit(VA.cox1), fun="cloglog")
using martigale residuals...

```
VA.cox2 <- coxph(Surv(stime, status) ~ Karn + strata(cell), data=VA)
scatter.smooth(VA$Karn, residuals(VA.cox2))
```
could try parametric - e.g. Weibull

VA.wei <- survreg(Surv(stime,status) ~ treat + age + Karn + diag.time + cell + prior, data=VA)

summary(VA.wei)

<table>
<thead>
<tr>
<th></th>
<th>coef</th>
<th>se</th>
<th>chisq</th>
<th>p</th>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>prior10</td>
<td>-0.043898</td>
<td>0.071278</td>
<td>0.2068</td>
<td>0.6489</td>
<td>-0.137196</td>
<td>0.050491</td>
</tr>
<tr>
<td>Log(scale)</td>
<td>-0.074599</td>
<td>0.06631</td>
<td>1.1250</td>
<td>0.2893</td>
<td>-0.207191</td>
<td>0.061418</td>
</tr>
</tbody>
</table>

Scale= 0.928

Weibull distribution

probably OK to just do exponential:

VA.exp <- survreg(Surv(stime,status) ~ treat + age + Karn + diag.time + cell + prior, data=VA, dist="exponential")
```r
> summary(VA.exp)

Call:
survreg(formula = Surv(stime, status) ~ treat + age + Karn + diag.time + cell + prior, data = VA, dist = "exponential")

Value Std. Error  z     p
(Intercept) 3.188611  0.70403 4.5291 5.92e-06
  treat2 -0.219565  0.19863 -1.1054 2.69e-01
    age   0.006108  0.00916  0.6667 5.05e-01
   Karn   0.030624  0.00511  5.9958 2.02e-09
diag.time -0.000297  0.00897 -0.0331 9.74e-01
  cell2  -0.820245  0.26211 -3.1294 1.75e-03
  cell3  -1.113121  0.27583 -4.0356 5.45e-05
  cell4  -0.377220  0.27263 -1.3837 1.66e-01
prior10  -0.049482  0.22687 -0.2181 8.27e-01

Scale fixed at 1

Exponential distribution
Loglik(model)  =  -716.2  Loglik(intercept only)  =  -751.2
   Chisq  =  70.12 on 8 degrees of freedom, p =  4.6e-12
Number of Newton-Raphson Iterations: 5
n  =  137
```
VA.cox2 <- stepAIC(VA.cox, ~ .^2)