Boosting, Bagging, etc.

Based mostly on notes by Greg Ridgeway
David Madigan



Unstable predictors

We can always assume
y=f(x)+&,where E(¢|x)=0

Assume that we have a way of constructing a
predictor, f, (x), from a dataset D.

We want to choose the estimator of f that
minimizes J, squared loss for example.

J(f,D)=E, (y—f,(x))



Bias-variance decomposition

If we could average over all possible datasets,
let the average prediction be

f(x)=E, f,(x)
The average prediction error over all datasets
that we might see 1s decomposable

E, J(/.D)=E& +E (f(x)= [(x) +E,,(/,(x)~ [ (x))

= noise + bias + variance



Bias-variance decomposition (cont.)

E,J(f.D)=E& +E (f(x)- [ (x) +E,,(f, (%)~ f(x))’

= noise + bias + variance

 The noise cannot be reduced.
* The squared-bias term might be reducible
 The variance term 1s O 1f we use

f,(x)= f(x)

But this requires having an infinite number of datasets



| Bagging (Bootstrap Aggregating)
Goal: Variance reduction

Method: Create bootstrap replicates of the
dataset and fit a model to each. Average the
predictions of each model.

Properties:

» Stabilizes “unstable” methods

* Easy to implement, parallelizable
* Theory 1s not fully explained



Bagging algorithm

1. Create K bootstrap replicates of the dataset.
2. Fit a model to each of the replicates.

3. Average (or vote) the predictions of the K
models.

Bootstrapping simulates the stream of infinite
datasets 1n the bias-variance decomposition.



Bagging Example
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100 bagged trees
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Regression results

Squared error loss

CART
Bagged CART

Boston Housing Ozone Friedman #1 Friedman #2 Friedman #3



Classification results

Misclassification rates
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Random Forests

“ The key to accuracy is low correlation and bias.
To keep bias low, trees are grown to maximum
depth.

To keep correlation low, the current version uses
this randomization.

1) Each tree is grown on a bootstrap sample of
the training set.

2) A number m is specified much smaller than the
total number of variables M. At each node, m
variables are selected at random out of the M,
and the split is the best split on these m variables. ”

(see Random Forests , Machine Learning(2001) 45 5-320)



An important feature is that it carries along an
internal test set estimate of the prediction
error.

For every tree grown, about one-third of the
cases are out-of-bag (out of the bootstrap
sample). Abbreviated oob.

Put these oob cases down the corresponding tree
and get response estimates for them.

For each case n, average or pluralize the
response estimates over all time that n was oob to
get a test set estimate p for y .

Averaging the loss over all n give the test set
estimate of prediction error.



Table 3 Test Set Errors (%)

Data Set Adaboost Forest-RC
Selection Two Features One Tree

glass 22.0 24.4 23.5 42.4
breast cancer 3.2 3.1 2.9 5.8
diabetes 26.6 23.0 23.1 32.1
sonar 15.6 13.6 13.8 31.7
vowel 4.1 3.3 3.3 30.4
ionosphere 6.4 5.9 5.7 14.2
vehicle 23.2 23.1 22.8 39.1
German credit 23.5 22.8 23.8 32.6
image 1.6 1.6 1.8 6.0
ecoli 14.8 12.9 12.4 25.3
votes 1.8 4.1 4.0 8.6
liver 30.7 27.3 27.2 40.3
letters 3.4 3.4 4.1 23.8
sat-images 8.8 9.1 10.2 17.3
zip-code 6.2 6.2 7.2 22.7
waveform 17.8 16.0 16.1 33.2
twonorm 4.9 3.8 3.9 20.9
threenorm 18.8 16.8 16.9 34.8

ringnorm 6.9 4.8 4.6 24.6



in R: library(randomForest)

> spam/.rf <- randomForest(yesno ~ ., data=spam?7, importance=TRUE)
> print(spam?.rf)

Call:
randomForest(formula = yesno ~ ., data = spam7, importance = TRUE
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2

OOB estimate of error rate: 11.89%
Confusion matrix:
n y class.error
n 20642 146 0.05236729
y 401 1412 0.22118036
>



> tuneRF(x=spam7[,-7], y=spam7$yesno, trace=FALSE)

-0.0582878 0.05
-0.01821494 0.05
mtry OOBError

1 1 0.1262769
2 2 0.1193219
4 4 0.1214953
>

> 1importance(spam?7.rf)

n y MeanDecreaseAccuracy MeanDecreaseGini

crl.tot 0.6355890 0.3020131
dollar 0.6494899 0.7958824
bang 0.6810718 0.8493533
money  ©0.5804884 0.7980897
n00o 0.6500804 ©0.4718939
make 0.3840804 0.5809521

0.5177274 241.5807
0.5210265 437.7034
0.5349533 575.5270
0.5048771 211.2677
0.5107114 123.9895
0.4117850 41.00645



Adaptive Bagging

Goal: Bias and variance reduction

Method: Sequentially fit bagged models,
where each fits the current residuals

Properties:
 Bias and variance reduction
* No tuning parameters



Adaptive bagging algorithm

1. Fit a bagged regressor to the dataset D.
2. Predict “out-of-bag” observations.

3. Fit a new bagged regressor to the bias
(error) and repeat.

For a new observation, sum the predictions
from each stage.
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Classification results

Misclassification rates
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Bagging References

* Leo Breiman’s homepage
www.stat.berkeley.edu/users/breiman/

* Breiman, L. (1996) “Bagging Predictors,”
Machine Learning, 26:2, 123-140.

* Friedman, J. and P. Hall (1999) “On

Bagging and Nonlinear Estimation”
www.stat.stanford.edu/~jhf



Peter Buhlmann and Bin Yu. Explaining bagging. Can be downloaded from
http://stat.ethz.ch /“buhlmann /bibliog.html, September 2000.

J.H. Friedman and O. Hall. On bagging and nonlinear estimation. Can be down-
loaded from http://www-stat.stanford.edu/ “jhf/#reports, May 2000.

Andreas Buja’s home page:

""The Effect of Bagging on Variance, Bias and Mean Squared Error"

A Buja, W. Stuetzle.

Bootstrap ageregation ("bagging") 15 a device for reducing the vanance of learning algorithms. We give a complete second-order
analysis of the effect of bagging on finite sums of U-statistics.

""Smoothing Effects of Bagging"

A Bua, W. Stuetzle.

An short note on bagging. It relates the von Mises expansion of a bagged statistical functional to the Efron-Stein ANOVA expansion of
the unbagged functional to show that the bagged functional 1s always smooth.




Boosting

Goal: Improve misclassification rates

Method: Sequentially fit models, each more
heavily weighting those observations
poorly predicted by the previous model

Properties:

* Bias and variance reduction

* Easy to implement

* Theory is not fully (but almost) explained



Generic boosting algorithm

Equally weight the observations (y,x).

Fortinl,...,T

Using the weights, fit a classifier f,(x) — y
Upweight the poorly predicted observations

Downweight the well-predicted observations

Merge f,,. .../ to form the boosted classifier



Real AdaBoost

Schapire & Singer 1998

y. € {-1,L1},w,=1/N
Fortinl,...,7do
1. Estimate P (y = 1|x).

2. Set f(x) = LlogaxY =] | x)
P (y=-1]|x)

3.w, « w,exp(-y,/,(x;)) and renormalize

Output the classifier F(x) = sign(z f (x))



goosting Example
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After one 1teration
CART splits, larger points have great weight
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Decision boundary after 100 iterations
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Boosting as optimization

Friedman, Hastie, Tibshirani [1998] -
AdaBoost 1s an optimization method for
finding a classifier.

Let ye {-1,1}, F(x)e(-o0,00)

J(F)=El"™ | x)



Criterion

« E(e?"™) bounds the misclassification rate.
[(yF(x)<0)<e "™

* The minimizer of E(e?"W) coincides with
the maximizer of the expected Bernoulli
likelihood.

QNF):EHF%:EhﬁF@)—bgGAwf“UL4

y* =5(1+y) € {01}



Optimization step

J(F-I—f)z E(e—Y(F(X)+f(X)) ‘X)
* Select f to minimize J...

E [I(y=1)|x]

FU*  p® +-log
1-E [I(y=1)|x]

—yF'" (x)

w(x,y) =e



Let J(F) = E[e”¥F®)]. Suppose we have a current estimate F(z) and seek an improved estimate
F(z) + c¢f(z). For fixed ¢ (and z), we expand J(F(z) + ¢f(z)) to second order about f(z) =0

J(F + (,'f) — E[(g_y(F('T)'i'cf(T))]
E[e_yF(Sﬂ)(l . ny(.’L') + (:2y2f($)2/2)]
E[(z_'?/F(‘")(l —yef(z) + c? /2)]

Q

since y?=1 and f(z)? = 1. Minimizing pointwise with respect to f(z) € {—1,1}, we write
f(zx) = arg mfin E, (1 —ycf(z) + ¢*/2|z) (16)

Here the notation E,,(-|z) refers to a weighted conditional ezpectation, where w = w(z,y) = e VF(®),

and

z,y)|z] & Elw(z,y)g(z,y)|z]
Buly(e)le] © ZoE 0]

For ¢ > 0, minimizing (16) is equivalent to maximizing
Eulyf()] (17)

The solution is

v )1 it Eu(ylz) = Pu(y =1|z) — Py(y = —1|z) > 0
f(@) _{ —1 otherwise (18)



LogitBoost

Friedman, Hastie, Tibshirani [1998]
* Logistic regression

1 with probability p(x)

=<
"0 with probability 1 - p(x)
1
p(X) - 1+ e_F(_x)

* Expected log-likelihood of a regressor, F(x)
EV(F)= E(yF(x) —log(1+e"™)] x)



Newton steps

J(F + f)= E(y(F(x)+ f(x))—log(1+e" ™) | x)

* [terate to optimize expected log-likelithood.

FIEOD

F"(x) « F"(x)——
ZI(F+f)
f =0




LogitBoost, continued

» Newton steps for Bernoulli likelihood
( \
F(x) e« F(x)+E, | —2—P%) |,
| P(0)(1=p(x))

w(x) = p(x)(1- p(x))

J

* In practice the £, (*|x) can be any regressor -
trees, smoothers, etc.

* Trees are adaptive and work well for high
dimensional data.



Misclassification rates
Friedman, Hastie, Tibshirani [1998]
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Boosting References

* Rob Schapire’s homepage

http://www.cs.princeton.edu/~schapire/boost.html

Freund, Y. and R. Schapire (1996). “Experiments with a new boosting
algorithm,” Machine Learning: Proceedings of the 13 International
Conference, 148-156.

Jerry Friedman’s homepage

www.stat.stanford.edu/~jhf

Friedman, J., T. Hastie, R. Tibshirani (1998). “Additive Logistic
Regression: a statistical view of boosting,” Technical report, Statistics
Department, Stanford University.



