Score Function for Data Mining Algorithms

Chapter 7 of HTF

David Madigan
Algorithm Components

1. The *task* the algorithm is used to address (e.g. classification, clustering, etc.)

2. The *structure* of the model or pattern we are fitting to the data (e.g. a linear regression model)

3. The *score function* used to judge the quality of the fitted models or patterns (e.g. accuracy, BIC, etc.)

4. The *search or optimization method* used to search over parameters and/or structures (e.g. steepest descent, MCMC, etc.)

5. The *data management technique* used for storing, indexing, and retrieving data (critical when data too large to reside in memory)
Introduction

• e.g. how to pick the “best” a and b in $Y = aX + b$

• usual score in this case is the sum of squared errors

• Scores for patterns versus scores for models

• Predictive versus descriptive scores

• Typical scores are a poor substitute for utility-based scores
Predictive Model Scores

\[S_{\text{SSE}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\hat{f}(x_i;\theta) - y_i)^2 \]

\[S_{0/1}(\theta) = \frac{1}{N} \sum_{i=1}^{N} I(\hat{f}(x_i;\theta), y_i) \]

- Assume all observations equally important
- Depend on differences rather than values
- Symmetric
- Proper scoring rules
Probabilistic Model Scores

\[L(\theta) = \prod_{i=1}^{N} \hat{p}(x_i); \theta) \]

• “Pick the model that assigns highest probability to what actually happened”

• Typically evaluated at the MLE
Optimism of the Training Error Rate

• Typically the training error rate:

\[
\text{err} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))
\]

is an optimistically biased estimate of the true error rate:

\[
E_{X,Y} \left[L(y_i, \hat{f}(x_i)) \right]
\]
"in-sample" error

• Consider the error rate with fixed \(x \)'s

\[
\text{Err}_{\text{in}} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_y \mathbb{E}_{Y_{\text{new}}} L(Y_{i \text{new}}^\text{new}, \hat{f}(x_i))
\]

• Can show squared-error, 0-1, and other loss functions:

\[
\text{Err}_{\text{in}} - \mathbb{E}_y (\text{err}) = \frac{2}{N} \sum_{i=1}^{N} \text{Cov}(\hat{y}_i, y_i)
\]

• For the standard linear model with \(p \) predictors:

\[
\text{Err}_{\text{in}} = \mathbb{E}_y (\text{err}) + 2 \frac{p}{N} \sigma^2_{\varepsilon}
\]
C_p and AIC

- Leads directly to the C_p statistic for scoring models

 $$C_p = \text{err} + 2 \frac{p}{N} \hat{\sigma}_e^2$$

- The Akaike Information Criterion (AIC) is derived similarly but applies more generally to log likelihood loss

 $$\text{AIC} = -\frac{2}{N} \cdot \text{loglik} + 2 \frac{p}{N}$$

where loglik is the maximized log likelihood. AIC coincides with C_p for the linear model.
Log-likelihood Loss

0-1 Loss

Number of Basis Functions

Log-likelihood

Misclassification Error

Train
Test
AIC
Bayesian Criterion

\[p(M_k \mid D) \propto p(D \mid M_k) p(M_k) \]

\[= p(M_k) \int p(D \mid \theta_k, M_k) p(\theta_k \mid M_k) d\theta_k \]

• Typically impossible to compute analytically
• All sorts of approximations
Laplace Method for $p(D|M)$

let $l(\theta) = \frac{\log(L(\theta))}{n} + \frac{\log p(\theta)}{n}$

(i.e., the log of the integrand divided by n)

then $p(D) = \int e^{nl(\theta)} d\theta$

Laplace’s Method:

$p(D) \approx \int \exp[nl(\tilde{\theta}) - n(\theta - \tilde{\theta})^2/(2\sigma^2)] d\theta$

where $\sigma^2 = -1/l'''(\tilde{\theta})$ and

$\tilde{\theta}$ is the posterior mode
Laplace cont.

\[p(D) = \int \exp[nl(\tilde{\theta}) - n(\theta - \tilde{\theta})^2 / (2\sigma^2)]d\theta \]

\[\approx \sqrt{2\pi} \sigma n^{-1/2} \exp\{nl(\tilde{\theta})\} \]

- Tierney & Kadane (1986, JASA) show the approximation is \(O(n^{-1})\)
- Using the MLE instead of the posterior mode is also \(O(n^{-1})\)
- Using the expected information matrix in \(\sigma\) is \(O(n^{-1/2})\) but convenient since often computed by standard software
- Raftery (1993) suggested approximating \(\tilde{\theta}\) by a single Newton step starting at the MLE
- Note the prior is explicit in these approximations
Monte Carlo Estimates of $p(D \mid M)$

$$p(D) = \int p(D \mid \theta) p(\theta) d\theta$$

Draw iid $\theta_1, \ldots, \theta_m$ from $p(\theta)$:

$$\hat{p}(D) = \frac{1}{m} \sum_{i=1}^{m} p(D \mid \theta^{(i)})$$

In practice has large variance
Monte Carlo Estimates of $p(D|M)$ (cont.)

Draw iid $\theta_1, \ldots, \theta_m$ from $p(\theta|D)$:

$$\hat{p}(D) = \frac{1}{m} \sum_{i=1}^{m} w_i p(D | \theta^{(i)})$$

$$w_i = \frac{p(\theta^{(i)})}{p(\theta^{(i)} | D)} = \frac{p(\theta^{(i)}) p(D)}{p(D | \theta^{(i)}) p(\theta^{(i)})}$$

“Importance Sampling”
Monte Carlo Estimates of $p(D|M)$ (cont.)

$$
\hat{p}(D) = \frac{1}{m} \sum_{i=1}^{m} \frac{p(D)}{p(D|\theta^{(i)})} \frac{p(D|\theta^{(i)})}{\sum_{i=1}^{m} \frac{p(D)}{p(D|\theta^{(i)})}}
$$

$$
= \left\{ \frac{1}{m} \sum_{i=1}^{m} p(D|\theta^{(i)})^{-1} \right\}^{-1}
$$

Newton and Raftery’s “Harmonic Mean Estimator”

Unstable in practice and needs modification.
\(p(D \mid M) \) from Gibbs Sampler Output

First note the following identity (for any \(\theta^* \)):

\[
p(D) = \frac{p(D \mid \theta^*) p(\theta^*)}{p(\theta^* \mid D)}
\]

\(p(D \mid \theta^*) \) and \(p(\theta^*) \) are usually easy to evaluate.

What about \(p(\theta^* \mid D) \)?

Suppose we decompose \(\theta \) into \((\theta_1, \theta_2)\) such that \(p(\theta_1 \mid D, \theta_2) \) and \(p(\theta_2 \mid D, \theta_1) \) are available in closed-form...

Chib (1995)
\(p(D | M) \) from Gibbs Sampler Output

\[
p(\theta_1^*, \theta_2^* | D) = p(\theta_2^* | D, \theta_1^*) p(\theta_1^* | D)
\]

The Gibbs sampler gives (dependent) draws from
\(p(\theta_1, \theta_2 | D) \) and hence marginally from \(p(\theta_2 | D) \)…

\[
p(\theta_1^* | D) = \int p(\theta_1^* | D, \theta_2) p(\theta_2 | D) d\theta_2
\]

\[
\approx \frac{1}{G} \sum_{g=1}^{G} p(\theta_1^* | D, \theta_2^{(g)})
\]
What about 3 parameter blocks...

\[
p(\theta_1^*, \theta_2^*, \theta_3^* | D) = p(\theta_3^* | D, \theta_1^*, \theta_2^*) p(\theta_2^* | D, \theta_1^*) p(\theta_1^* | D)
\]

\[
p(\theta_2^* | D, \theta_1^*) = \int p(\theta_2^* | D, \theta_1^*, \theta_3) p(\theta_3 | D, \theta_1^*) d\theta_3
\approx \frac{1}{G} \sum_{g=1}^{G} p(\theta_2^* | D, \theta_1^*, \theta_3^{(g)})
\]

To get these draws, continue the Gibbs sampler sampling in turn from:

\[
p(\theta_2 | D, \theta_1^*, \theta_3) \text{ and } p(\theta_3 | D, \theta_1^*, \theta_2)
\]
Bayesian Information Criterion

\[S_{BIC}(M_k) = -2 \log \text{lik} + p_k \log n, \quad k = 1, \ldots, K \]

• BIC is an O(1) "approximation" to \(p(D|M) \)

• Circumvents explicit prior

• Approximation is \(O(n^{1/2}) \) for a class of priors called “unit information priors.”

• No free lunch (Weakliem (1998) example)