The Diversity of Samples from the Same Population
Thought Question 1:

40% of large population disagree with new law. In parts a and b, think about role of sample size.

a. If randomly sample 10 people, will exactly four (40%) disagree with law? Surprised if only two in sample disagreed? How about if none disagreed?

b. If randomly sample 1000 people, will exactly 400 (40%) disagree with law? Surprised if only 200 in sample disagreed? How about if none disagreed?

c. Explain how long-run relative-frequency interpretation of probability and gambler’s fallacy helped you answer parts a and b.
Thought Question 2:

Mean weight of all women at large university is 135 pounds with a standard deviation of 10 pounds.

a. Recalling Empirical Rule for bell-shaped curves, in what range would you expect 95% of women’s weights to fall?

b. If randomly sampled 10 women at university, how close do you think their average weight would be to 135 pounds? If sampled 1000 women, would you expect average weight to be closer to 135 pounds than for the sample of only 10 women?
Thought Question 3:

Survey of 1000 randomly selected individuals has a margin of error of about 3%, so results accurate to within ± 3% most of the time.

Suppose 25% of adults believe in reincarnation. If ten polls are taken, each asking a different random sample of 1000 adults about belief in reincarnation, would you expect each poll to find exactly 25% of respondents expressing belief in reincarnation? If not, into what range would you expect the ten sample proportions to reasonably fall?
19.1 Setting the Stage

Working Backward from Samples to Populations

• Start with question about population.
• Collect a sample from the population, measure variable.
• Answer question of interest for sample.
• With statistics, determine how close such an answer, based on a sample, would tend to be from the actual answer for the population.

Understanding Dissimilarity among Samples

• Suppose most samples are likely to provide an answer that is within 10% of the population answer.
• Then the population answer is expected to be within 10% of whatever value the sample gave.
• So, can make a good guess about the population value.
19.2 What to Expect of Sample Proportions

40% of population carry a certain gene
Do Not Carry Gene = ☺, Do Carry Gene = ☐

A slice of the population:
Possible Samples

Sample 1: ☹☹■

Sample 1: Proportion with gene = 12/25 = 0.48 = 48%
Sample 2: Proportion with gene = 9/25 = 0.36 = 36%
Sample 3: Proportion with gene = 10/25 = 0.40 = 40%
Sample 4: Proportion with gene = 7/25 = 0.28 = 28%

• Each sample gave a different answer.
• Sample answer may or may not match population answer.
Conditions for Rule for Sample Proportions

1. There exists an actual population with fixed proportion who have a certain trait. Or
 There exists a repeatable situation for which a certain outcome is likely to occur with fixed probability.

2. Random sample selected from population (so probability of observing the trait is same for each sample unit). Or
 Situation repeated numerous times, with outcome each time independent of all other times.

3. Size of sample or number of repetitions is relatively large – large enough to see at least 5 of each of the two possible responses.
Example 1: Election Polls

Pollster wants to estimate proportion of voters who favor a certain candidate. Voters are the *population units*, and favoring candidate is *opinion of interest*.

Example 2: Television Ratings

TV rating firm wants to estimate proportion of households with television sets tuned to a certain television program. Collection of *all households with television sets* makes up the *population*, and being *tuned to program* is *trait of interest*.
Example 3: Consumer Preferences

Manufacturer of soft drinks wants to know what proportion of consumers prefers new mixture of ingredients compared with old recipe. *Population* consists of all consumers, and *response of interest* is preference of new formula over old one.

Example 4: Testing ESP

Researcher wants to know the probability that people can successfully guess which of 5 symbols is on a hidden card. Each symbol is equally likely. *Repeatable situation* is a guess, and *response of interest* is successful guess. Is the probability of correct guess higher than 20%?
Defining the Rule for Sample Proportions

If numerous samples or repetitions of the same size are taken, the frequency curve made from proportions from various samples will be *approximately bell-shaped*.

Mean will be true proportion from the population. **Standard deviation** will be:

\[
\sqrt{(\text{true proportion})(1 - \text{true proportion})} \div \text{sample size}
\]
Example 5: Using Rule for Sample Proportions

Suppose 40% of all voters in U.S. favor candidate X. Pollsters take a sample of 2400 people. **What sample proportion would be expected to favor candidate X?**

The sample proportion could be anything from a bell-shaped curve with **mean 0.40** and **standard deviation**:

\[
\sqrt{\frac{(0.40)(1 - 0.40)}{2400}} = 0.01
\]

For our sample of 2400 people:

- **68% chance** sample proportion is between 39% and 41%
- **95% chance** sample proportion is between 38% and 42%
- **almost certain** sample proportion is between 37% and 43%
19.3 What to Expect of Sample Means

- Want to estimate average weight loss for all who attend national weight-loss clinic for 10 weeks.
- Unknown to us, population mean weight loss is 8 pounds and standard deviation is 5 pounds.
- If weight losses are approximately bell-shaped, 95% of individual weight losses will fall between –2 (a gain of 2 pounds) and 18 pounds lost.
Possible Samples

Sample 1: 1,1,2,3,4,4,4,5,6,7,7,7,8,8,9,9,11,11,13,13,14,14,15,16,16
Sample 2: −2, 2,0,0,3,4,4,4,5,5,6,6,8,8,9,9,9,9,9,10,11,12,13,13,16
Sample 3: −4,−4,2,3,4,5,7,8,8,9,9,9,9,10,10,11,11,11,12,12,13,14,16,18
Sample 4: −3,−3,−2,0,1,2,2,4,4,5,7,7,9,9,10,10,10,11,11,12,12,14,14,14,19

Results:

Sample 1: Mean = 8.32 pounds, std dev = 4.74 pounds
Sample 2: Mean = 6.76 pounds, std dev = 4.73 pounds
Sample 3: Mean = 8.48 pounds, std dev = 5.27 pounds
Sample 4: Mean = 7.16 pounds, std dev = 5.93 pounds

- *Each sample gave a different sample mean, but close to 8.*
- *Sample standard deviation also close to 5 pounds.*
Conditions for Rule for Sample Means

1. Population of measurements is bell-shaped, and a random sample of any size is measured.

OR

2. Population of measurements of interest is not bell-shaped, but a large random sample is measured. Sample of size 30 is considered “large,” but if there are extreme outliers, better to have a larger sample.
Example 6: Average Weight Loss

Weight-loss clinic interested in average weight loss for participants in its program. Weight losses assumed to be bell-shaped, so Rule applies for any sample size. *Population* is all current and potential clients, and *measurement* is weight loss.

Example 7: Average Age at Death

Researcher is interested in average age at which left-handed adults die, assuming they have lived to be at least 50. Ages at death not bell-shaped, so need at least 30 such ages at death. *Population* is all left-handed people who live to be at least 50 years old. The *measurement* is age at death.
Defining the Rule for Sample Means

If numerous samples or repetitions of the same size are taken, the frequency curve of means from various samples will be **approximately bell-shaped**.

Mean will be same as mean for the population. **Standard deviation** will be:

\[
\frac{\text{population standard deviation}}{\sqrt{\text{sample size}}}
\]
Example 9: Using Rule for Sample Means

Weight-loss example, population mean and standard deviation were 8 pounds and 5 pounds, respectively, and we were taking random samples of size 25.

Potential sample means represented by a bell-shaped curve with mean of 8 pounds and standard deviation:

\[
\frac{5}{\sqrt{25}} = 1 \text{ pound}
\]

For our sample of 25 people:

- **68% chance** sample mean is between 7 and 9 pounds
- **95% chance** sample mean is between 6 and 10 pounds
- **almost certain** sample mean is between 5 and 11 pounds
Increasing the Size of the Sample

Weight-loss example: suppose a sample of 100 people instead of 25 was taken.

Potential sample means still represented by a bell-shaped curve with mean of 8 pounds but standard deviation:

\[
\frac{5}{\sqrt{100}} = 0.5 \text{ pounds}
\]

For our sample of 100 people:

- 68% chance sample mean is between 7.5 and 8.5 pounds
- 95% chance sample mean is between 7 and 9 pounds
- almost certain sample mean is between 6.5 and 9.5 pounds

Larger samples tend to result in more accurate estimates of population values than do smaller samples.
19.4 What to Expect in Other Situations

• So far two common situations – (1) want to know what proportion of a population fall into one category of a categorical variable, (2) want to know the mean of a population for a measurement variable.

• Many other situations and similar rules apply to most other situations
Two Basic Statistical Techniques

- **Confidence Intervals**
 Interval of values the researcher is fairly sure covers the true value for the population.

- **Hypothesis Testing**
 Uses sample data to attempt to reject the hypothesis that nothing interesting is happening—that is, to reject the notion that chance alone can explain the sample results.
Case Study 19.1: Do Americans Really Vote When They Say They Do?

Reported in *Time* magazine (Nov 28, 1994):

- Telephone poll of 800 adults (2 days after election) – 56% reported they had voted.
- Committee for Study of American Electorate stated only 39% of American adults had voted.

Could it be the results of poll simply reflected a sample that, by chance, voted with greater frequency than general population?
Case Study 19.1: Do Americans Really Vote When They Say They Do?

Suppose only 39% of American adults voted. We can expect sample proportions to be represented by a bell-shaped curve with mean 0.39 and standard deviation:

\[
\sqrt{\frac{(0.39)(1 - 0.39)}{800}} = 0.017
\]

For our sample of 800 adults, we can be almost certain to see a sample proportion between 33.9% and 44.1%. The reported 56% is far above 44.1%.

The standard score for 56% is: \((0.56 - 0.39)/0.017 = 10\). Virtually impossible to see a standard score of 10 or more.
For Those Who Like Formulas

\[\hat{p} \sim N(p, \frac{p(1-p)}{n}) \text{ and } \bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \]

Notation for Population and Sample Proportions

Sample size = \(n \)

Population proportion = \(p \)

Sample proportion = \(\hat{p} \), which is read “p-hat” because the \(p \) appears to have a little hat on it.

The Rule for Sample Proportions

If numerous samples or repetitions of size \(n \) are taken, the frequency curve of the \(\hat{p} \)'s from the various samples will be approximately bell-shaped. The mean of those \(\hat{p} \)'s will be \(p \). The standard deviation will be

\[\sqrt{\frac{p(1-p)}{n}} \]

Notation for Population and Sample Means and Standard Deviations

Population mean = \(\mu \) (read “mu”), population standard deviation = \(\sigma \) (read “sigma”)

Sample mean = \(\bar{X} \), sample standard deviation = \(s \)

The Rule for Sample Means

If numerous samples of size \(n \) are taken, the frequency curve of the \(\bar{X} \)'s from the various samples is approximately bell-shaped with mean \(\mu \) and standard deviation \(\sigma/\sqrt{n} \).