
The Kalman FilterMax WellingCalifornia Institute of Technology 136-93Pasadena, CA 91125welling@vision.caltech.edu1 IntroductionUntil now we have only looked at systems without any dynamics or structure over time. The models hadspatial structure but were de�ned at one moment in time, i.e. they were \static". In this lecture we willanalyse a powerfull dynamic model, which could be characterized as factor analysis over time, althoughthe number of observed features is not necessarily larger than the number of factors. The idea is again tocompute only the mean and the covariance statistics, i.e. to characterize the probabilities by Gaussians. Thishas the advantage of being completely tractible (for strongly nonlinear systems the Gaussian assumptioncan no longer hold). The power of the Kalman Filter (KF), is that it operates on-line. This implies, thatto compute the best estimate of the state and its uncertainty, we can update the previous estimates by thenew measurement. This implies that we don't have to consider all the previous data again, to computethe optimal estimates; we only need to consider the estimates from the previous time step and the newmeasurement.So what are KFs usually used for, or what do they model? It is not hard to motivate the KF, because inpractice it can be used for almost \everthing that moves". Popular applications include, navigation, guidance,radar tracking, sonar ranging, satellite orbit computation, stock prize prediction, etc. These applicationscan summarized as denoising, tracking and control.It is used in all sorts of �elds, like engineering, seismology, bioengineering, econometrics etc. For instance,when the Eagle landed on the moon, it did so with a KF. Also, gyroscopes in airplanes use KFs. And thelist goes on and on.The main idea is that we like to estimate a state of some sort (location and velocity of airplane) and itsuncertainty. However, we do not directly observe these states. We only observe some measurements froman array of sensors, which are noisy. As an additional complication, the states evolve in time, also with itsown noise or uncertainties. The question now becomes, how can we still optimally use our measurements toestimate the unobserved (hidden) states and their uncertainties.In the following we will �rst describe the Kalman Filter and derive the KF equations. We assume thatthe parameters of the system are �xed (known). Then we derive the Kalman Smoother equations, whichallow us to use measurements forward in time to help predict the state at the current time better. Becausethese estimates are usually less noisy than the if we used measurements up till the current time only, we saythat we smooth the state estimates. Next, we will show how to employ the Kalman Filter and smootherequations to e�ciently estimate the parameters of the model from training data. This will then be, notsurprisingly, another instance of the EM algorithm. In the appendix you will �nd some usefull lemma's andmatrix equalities, together with the derivation of the \lag-one smoother", which is needed for learning.2 Introductory ExampleLet me brie
y describe an example. Consider a ship at sea which has lost its bearings. They need to estimatetheir current position using the positions of the stars. In the meantime the ships moves on on a wavy sea.The question becomes, how can we incorporate the measurement optimally, to estimate the ships locationat sea. Let's assume that the model for the ship's location over time is given by,yt+1 = yt + c+wt (1)This contains a drift term (constant velocity c), and a noise term1. A noisy measurement is described by,xt = yt + vt (2)Let's also assume we have some estimate ŷt of the location at some time t and some uncertainty �2t . Howdoes this change as the ships sails for one second. Of course, it will drift in the direction of its velocity by adistance c. However, the uncertainty grows, due to the waves. This is expressed as,ŷt+1 = ŷt + c (3)1The constant drift term will not be used in the main body of these classnotes1



The uncertainty is given by, �2t+1 = �2t + �2w (4)If, we do not do any measurements, the uncertainty in the position will keep growing, until we have no clueanymore as to where we are. If we add the information of a measurement, the �nal estimate is weightedaverage between the observed position and the previous estimate,ŷ0t+1 = �2v�2t+1 + �2v ŷt+1 + �2t+1�2t+1 + �2v xt+1 (5)We observe that if we have in�nite con�dence in the measurement �v ! 0, then the new location estimateis simply equal to the measurement. Also, if we have in�nite con�dence in the previous estimate, themeasurement is ignored. For the new uncertainty we �nd,�02t+1 = �2t+1 �2v�2t+1 + �2v (6)This is also easy to interpret, since it says that if one of the uncertainties dissappears, the total uncertaintydisappears, since the other estimate can simply be ignored in that case. Notice that the uncertainty alwaysdecreases or stays equal, by adding the measurement. The estimates for the location and uncertainty,incorporatating the measurement, can be rewritten as follows,ŷ0t+1 = ŷt+1 +Kt+1(xt+1 � ŷt+1) (7)�02t+1 = (1�Kt+1) �2t+1 (8)Kt+1 = �2t+1�2t+1 + �2v (9)From this we can see that the state estimate is corrected by the measurement error, multiplied by a gainfactor (the Kalman gain). If the gain is zero, no attention is paid to the measurement, if its one, we simplyuse the measurement as our new state estimate. Similarly for the uncertainties, if the measurement isin�nitely accurate, the gain is one, which implies that there is no uncertainty left. On the other hand, if themeasurement is worthless, the gain is zero, which therefore does not decrease the overall uncertainty.The above one dimensional example will be generalized to higher dimensions in the following.3 The ModelLet us �rst introduce the state of the KF yt at time t. The state is a vector of dimension d and remainsunobserved. At every time t we alo have a k dimenional vector of observations xt, which depend on the stateand some additive Gaussian noise. We will assume the following dynamical model for the KF:yt+1 = Ayt +wt (10)xt = Byt + vt (11)Note that the dynamics is governed by a Markov process, i.e. the state at yt+1 is independent of all otherstates, given yt. The evolution noise and the measurement noise are assumed white and Gaussian, i.e.distributed according to, w � Gw[0;Q] (12)v � Gv[0;R] (13)The noise vectors vt and wt are also assumed to be uncorrelated with the the state yt. From this we simplyderive, E[yt;vk] = 0 8 t; k (14)E[yt;wk] = 0 t � k (15)E[xt;vk] = 0 t � k � 1 (16)E[xt;wk] = 0 t � k (17)E[vt;wk] = 0 8 t; k (18)E[vt;vk] = 0 t 6= k; = R t = k (19)E[wt;wk] = 0 t 6= k; = Q t = k (20)2



The above model could be considered as a factor analysis model over time, i.e. at every instant we have aFA model, where the factors now depend on the factors of a previous time step.The initial state y1 is distributed according toy1 � G[�;�]: (21)It is easy to generalize this model to include a `drift' and external inputs. The drift is a constant changeexpressed by adding � to the dynamical equation.yt+1 = Ayt + � +wt= A0y0t +wt (22)where we incorporated the constant again through the rede�nitions A0 = [A;�] and y0t = [yt; 1]. For theexternal inputs, we let the evolution depend on a l dimensional vector of inputs, ut, as follows,yt+1 = Ayt +Cut +wt (23)This model is used when we want to control the system. We could even let the parameters fA;�;C; g dependon time. However, in the rest of this chapter we will assume the simplest case, i.e. a linear evolution withoutdrift or inputs, and a linear measurement equation, with white uncorrelated noise. Since the initial state isGaussian and the evolution equation is linear, this implies that the state at later times will remain Gaussian.4 General PropertiesWe want to be able to estimate the state and the covariance of the state at any time t, given a set ofobservations x� = fx1; :::;x�g. If � is equal to the current time t we say that we �lter the state. If � issmaller than t we say that we predict the state and �nally, if � is larger the t we say that we smooth thestate. The main probability of interest is, p(ytjx� ); (24)since it conveys all the information about the state yt at time t, given all the observations up to time � .Since we are assuming that this probability is Gaussian, we only need to calculate its mean and covariance,denoted by ŷ�t = E[ytjx� ] (25)P�t = E[~y�t ~y�t jx� ] (26)where we de�ned ~y�t = yt � ŷ�t , i.e. the state prediction error. Notice that these quantities still depend onthe random variables x� and are therefore random variables themselves. We will now prove however thatthe covariance P does actually not depend on x� . P may be considered as a parameter therefore in thefollowing. To proof the above claim we simply show that the correlation between the random variables ~y�tand x� vanishes. For normally distributed random variables this implies that they are independent.Lemma 3 The random variables ~y�t = yt � ŷ�t and x� = fx1; :::;x�g are independent.proof E[ytx� ]�E[ŷ�t (x� ) x� ] =Z dytdx� p(yt;x� ) yt x� � Z dx� p(x� ) x� �Z dyt p(ytjx� ) yt�Z dytdx� p(yt;x� ) yt x� � Z dytdx� p(x� ) p(ytjx� ) yt x�= 0 since p(yt;x� ) = p(x� ) p(ytjx� )From this we derive the following corollary,P�t1;t2 = E[~y�t1 ~y�t2 ] = E[yt1yt2 ]�E[ŷ�t1 ŷ�t2 ] (27)Another usefull result we will need is the fact that the predicted measurement error "t = xt � Bŷt�1t isindependent of the measurements xt�1. The predicted measurement error is also called the innovation, sinceit represents that part of the new measurement xt that can not be predicted using knowledge of the xt�1measurements, since they are independent. 3



Lemma 4 The random variables "t = xt �Bŷt�1t and xt�1 = fx1; :::;xt�1g are independent.Proof The proof is simple, and proceeds again by proving that they are uncorrelated,E["t;xt�1] = E[xtxt�1]�BE[ŷt�1t xt�1]= BE[ytxt�1] +BE[vtxt�1]�BE[ŷt�1t xt�1]= BE[~yt�1t xt�1] +BE[vtxt�1]= 0;where we used the result that ~yt�1t is independent of xt�1 proved directly above and (16).Notice, that since the innovation "t�1 is a function of xt�1, this also implies the following corollary,E["t"� ] = 0 for� = 1; :::; t� 1 (28)Before we proceed we would like to remark we have not well motivated ŷ�t as the preferred estimate ofthe state yt given data x� . Other possible choices could be, the most likely state given the data, or themost likely sequence of states y1; :::;yt given the data. It turns out that for Gaussian distributed randomvariables, these objectives are equivalent. On top of that, it turns out that the ŷ�t is also the minimal varianceestimator, i.e. it minimizes P�t .5 Kalman Filter EquationsWe will now proceed to derive the Kalman �lter equations (i.e. � = t). First write,p(ytjxt) = p(xtjyt) p(ytjxt�1)p(xtjxt�1) ; (29)where p(ytjxt�1) = Z dyt�1 p(ytjyt�1) p(yt�1jxt�1) (30)The denominator in (29) is an unimportant normalization factor. The remaining densities are given by,p(xtjyt) = Gxt [Byt;R] (31)p(ytjyt�1) = Gyt [Ayt�1;Q] (32)(33)The equations (29) and (30) have interesting interpretations as a reactive reenforcement due to an observationand a di�usion equation for the Gaussian probability between observations. Equation (29) is basicallyapplying Bayes law in the same way as we did for Bayesian learning, i.e. we are updating the probabilitydistribution of an unknown random variable by including evidence. This has the e�ect of making thedistribution peakier, i.e. less uncertain. The second equation (30) evolves the hidden state from one instantto the next, without considering more evidence. This has the e�ect of making the distribution less peakier,i.e. introducing more uncertainty. Together, these equations express p(ytjxt) in terms of p(yt�1jxt�1) andmay be used recursively. It is now easy to verify that in case of a prediction only the equation (30) remains,i.e. p(ytjx� ) = Z dyt�1 p(ytjyt�1) p(yt�1jx� ) � < t (34)The case when � > t, i.e. smoothing, is more di�cult and will be dealt with later. Let us return to the�ltering case. We like to calculate the mean ŷt�1t and covariance Pt�1t of the pdf p(ytjxt�1), expressed interms of the mean ŷt�1t�1 and covariance Pt�1t�1 of the density p(yt�1jxt�1). Notice that these two estimatorsdetermine the densities completely, since they are Gaussian. For the mean we �nd,ŷt�1t = E[ytjxt�1]= AE[yt�1jxt�1] +E[wt�1jxt�1]= Aŷt�1t�1 (35)4



where we have used (17) and the fact that w has zero mean (12). For the covariance we write we �rst write,~yt�1t = (yt � ŷt�1t )= Ayt�1 +wt�1 �Aŷt�1t�1= A~yt�1t�1 +wt�1and notice that wt�1 is independent of ~yt�1t�1 since this is a function of yt�1 and xt�1, while wt�1 is inde-pendent of both (using 15 and 17). Thus we can write,Pt�1t = E[~yt�1t (~yt�1t )T ]= E[(A~yt�1t�1 +wt�1)(A~yt�1t�1 +wt�1)T ]= AE[~yt�1t�1(~yt�1t�1)T ]AT +E[wt�1wTt�1]= APt�1t�1AT +Q (36)Next we wish to calculate ŷtt and P tt interms of the above calculated quantities, using equation (29). Wewrite, p(ytjxt) = Gyt [ŷt�1t ;Pt�1t ] Gxt [Byt;R]p(xtjxt�1) : (37)We will now use Lemma 1, applying (74) to the second term in the numerator of (37), and then applying(75) to the result of that we �nd,p(ytjxt) = k2(xt) Gyt [([Pt�1t ]�1+BTR�1B)�1([Pt�1t ]�1ŷt�1t +BTR�1xt); ([Pt�1t ]�1+BTR�1B)�1]; (38)Because we know that the multplication of two Gaussians is again a Gaussian and moreover that (38) mustbe normalized with respect to yt, we deduce the the factor k2(xt) = 1. Finally we must use Lemma 2 toshow that p(ytjxt) is a Gaussian distribution with the following mean and covariance,ŷtt = ŷt�1t +Kt(xt �Bŷt�1t ) (39)Ptt = (I�KtB)Pt�1t (40)Kt = Pt�1t BT (R+BPt�1t BT )�1 (41)whereKt is called the Kalman gain. These equations are initialized by ŷ01 = � and P01 = �. These equations,together with (35) and (36) constitute the celebrated Kalman Filter equations and allow one to estimate thestate of the system on-line, i.e. every new observation can be used recursively, given the information thatwas already received before. Notice that the gain factor Kt grows if the measurement covariance R becomessmaller, thus putting more weight on the measurement residual (di�erence between predicted an actualmeasurement). Also if the noise covariance Pt�1t becomes smaller, less emphasis is put on the measurementresidual. It is also instructive to notice that the evolution of the state noise Ptt (and therefore the Kalmangain Kt), is independent of the measurements and states and may be precomputed. From a numerical pointof view, equation (40) is not preferable, due to the fact that it is a di�erence of two postive de�nite matrices,which is not guaranteed to result in a positive de�nite matrix, and may lead to numerical instabilities. Thishowever, is easily �xed by noting that from (41) we can derive,KtRKTt = (I�KtB)Pt�1t BTKT ; (42)which can be used to rewrite (40) as,Ptt = (I�KtB)Pt�1t (I�KtB)T +KtRKTt ; (43)which is a sum of two postive de�nite matrices!6 Kalman Smoother EquationsNext we want to solve the smoothing problem. This implies that we are going to include later measurementsx� ; � > t, to improve our estimates of the states yt. The resultant estimates will be smoother (less noisy).5



First concentrate on the mean E[yt�1jx� ], for � > t. We will now invoke the corollary of Lemma 1,identifying y = yt�1, x = yt, �y = ŷ�t�1, �x = ŷ�t and Gz[�;�] = p(yt�1;ytjx� ). Using these identi�cationswe �nd, ŷ�t�1 = E[yt�1jx� ] = E[yt�1jyt = ŷ�t ;x� ]: (44)Next we write,p(yt�1;ytjx� ) = p(yt�1;yt;xt�1;xt; :::;x� )p(x� )= p(xt; :::;x� jyt�1;yt;xt�1) p(ytjyt�1;xt�1) p(yt�1jxt�1) p(xt�1)p(x� )= p(xt; :::;x� jyt) p(ytjyt�1) p(yt�1jxt�1)p(xt; :::;x� jxt�1)= k1(yt;x� ) p(ytjyt�1) p(yt�1jxt�1)= k1(yt;x� ) Gyt [Ayt�1;Q] Gyt�1 [ŷt�1t�1;Pt�1t�1] (45)In the same spirit as the derivation for the kalman �lter (see derivation around 37), we will now use Lemma1, applying (74) to the second term in (45), and then applying (75) to the result of that,p(yt�1jyt;x� ) = p(yt�1;ytjx� )p(ytjx� )= k2(yt;x� ) Gyt�1 [([Pt�1t�1]�1 +ATQ�1A)�1([Pt�1t�1]�1ŷt�1t�1 +ATQ�1yt); ([Pt�1t�1]�1 +ATQ�1A)�1];(46)Notice the similarity between (38) and (46). Because we know that the multplication of two Gaussians isagain a Gaussian and moreover that (46) must be normalized with respect to yt�1, we deduce the the factork4(yt;x� ) = 1. Finally we invoke (44) and Lemma 2 to �nd,ŷ�t�1 = ŷt�1t�1 + Jt�1(ŷ�t � ŷt�1t ) (47)Jt�1 = Pt�1t�1AT [Pt�1t ]�1 (48)where we used (36) in the last line. This is initialized with ŷ�� , computed from the Kalman Filter equations.For the covariance we �rst observe, ~y�t�1 + Jt�1ŷ�t = ~yt�1t�1 + Jt�1Aŷt�1t�1; (49)where we used (35) and (47). Multiplying both sides with their respective transpose from the right, takingexpectations, and using the fact that ~y�t�1 is independent of ŷ�t (since the latter is a function of x� andLemma 3) and similarly for ~yt�1t�1 and ŷt�1t , gives us,P�t�1 + Jt�1E[ŷ�t ŷ�t ]JTt�1 = Pt�1t�1 + Jt�1AE[ŷt�1t�1ŷt�1t�1]ATJTt�1: (50)Then we use, E[ŷ�t ŷ�t ] = E[ytyt]�P�t (51)= E[(Ayt�1 +wt�1)(Ayt�1 +wt�1)T ]�P�t (52)= AE[yt�1yt�1]AT +Q�P�t (53)where (15) and (20) and the corollary following Lemma 3 was used. Analoguesly,E[ŷt�1t�1ŷt�1t�1] = E[yt�1yt�1]�Pt�1t�1 (54)Putting these together and using (36), we �ndP�t�1 = Pt�1t�1 + Jt�1(P�t �Pt�1t )JTt�1 (55)which is initialized by P�� , computed from the Kalman Filter equations. Equations (47), (55) and (48) arethe so called Kalman smoother equations. If we want to estimate a state yt given data x� with � > t, thenwe �rst apply the Kalman �lter equations recursively until we have reached the state y� . While movingforward we store the values for ŷtt, ŷt�1t , Ptt and Pt�1t , t = 1:::� . Then we move backward by applying thesmoother equations, until we have reached the state t we would like to estimate. Because we include moreobservations in the estimation of the state, the result will be less noisy as compared to the Kalman �lterresult, hence the name smoother. 6



7 Parameter Estimation for the Kalman ModelWe will now proceed to estimate the parameters f�;�;B;R;A;Qg of the Kalman �lter model using EM.We consider the states yt as hidden variables, while x� are the observations. We assume we have observedN sequences of length � . The joint probability of the complete data is given by,p(y� ;x� ) = p(y1) �Yt=2 p(ytjyt�1) �Yt=1 p(xtjyt) (56)For EM, we are interested in the expectation of the joint pdf over the posterior density,Q = NXn=1 Z dy� p(y� jx�n) log [p(y� ;x�n)]= �12 NXn=1 Z dy� p(y� jx�n)[(d+ k)� log(2�)+ log det�+ (� � 1) log detQ+ � log detR+ (y1 � �)T��1(y1 � �)+ �Xt=2(yt �Ayt�1)TQ�1(yt �Ayt�1)+ �Xt=1(xt;n �Byt)TR�1(xt;n �Byt)] (57)Inspection of this objective function reveals that the only su�cient statistics that need to be calculated inthe E-step are, E[ytjx�n] = ŷ�t;n t = 1; :::; � (58)E[ytytjx�n] = P�t + ŷ�t;nŷ�t;n �Mnt t = 1; :::; � (59)E[ytyt�1jx�n] = P�t;t�1 + ŷ�t;nŷ�t�1;n �Mnt;t�1 t = 2; :::; � (60)Fortunately, except for the last one, these are precisely the quantities that can be calculated through theKalman Filter and Smoother recursions. The last quantity, which is called the lag-one covariance smootheris computed in the appendix C. It is given by the following recursion,P�t�1;t�2 = Pt�1t�1JTt�2 + Jt�1(P�t;t�1 �APt�1t�1)JTt�2: (61)which is initialized by, P��;��1 = (I�K�B)AP��1��1: (62)We now concentrate on the M-step, which maximizes (57) with respect to the parameters of the jointdensity only, i.e. the parameters present in the posterior are held �xed.Taking derivatives with respect to � and equating to zero gives,@@�Q = NXn=1��1(ŷ�1;n � �) = 0)�new = 1N NXn=1 ŷ�1;n (63)For � this implies, @@��1Q = 12N�� 12 NXn=1(Mn1 � ŷ�1;n�T � �(ŷ�1;n)T + ��T ))�new = 1N NXn=1Mn1 � �new�Tnew = P�1 + 1N NXn=1(ŷ�1;n � �new)(ŷ�1;n � �new)T (64)7



where we used that P�t is independent of x�n. Taking derivatives with respect to A gives.@@AQ = NXn=1 �Xt=2(Q�1Mnt;t�1 �Q�1AMnt�1))Anew = " NXn=1 �Xt=2Mnt;t�1# " NXn=1 �Xt=2Mnt�1#�1 (65)For Q we �nd, @@QQ = 12(� � 1)NQ� 12 NXn=1 �Xt=2(Mnt �AMnt�1;t �Mt;t�1AT +AMnt�1AT ))Qnew = 1N(� � 1) NXn=1 �Xt=2(Mnt �AnewMnt�1;t); (66)where we used (65), and Mnt�1;t = (Mnt;t�1)T . For B we have,@@BQ = NXn=1 �Xt=1(R�1xt;nŷ�t;n �R�1BMnt ))Bnew = " NXn=1 �Xt=1 xt;nŷ�t;n#" NXn=1 �Xt=1Mnt #�1 (67)And �nally we have for R,@@RQ = 12�NQ� 12 NXn=1 �Xt=1(xt;nxt;n � xt;nŷ�t;nBT �Bŷ�t;nxt;n +BMntBT ))Rnew = 1N� NXn=1 �Xt=1(xt;nxt;n �Bnewŷ�t;nxt;n); (68)where we used (67). Alternating E-steps and M-steps will thus converge to the maximum likelihood estimatesof these parameters. Notice that the recursion equations ful�l a double role. They may be used to e�cientlycompute the E-step in the learning problem, and, once the parameters are �xed, to estimate the optimalstate and state-covariance of the dynamical system, possibly on line.8 Computation of LikelihoodTo monitor the total log-likelihood of the system we may calculate,L� = NXn=1 log[p(x�n)] = NXn=1 �Xt=2 log[p(xt;njxt�1n )] + NXn=1 log[p(x1;n)]: (69)The mean and covariance of the Gaussians p(xt;njxt�1;n) can be computed as follows (omitting n for nota-tional convenience), x̂t�1t = Z dxt p(xtjxt�1) xt= Z dxt Z dyt p(xtjyt) p(ytjxt�1) xt= Z dxt Z dyt Gxt [Byt;R] Gyt [ŷt�1t ;Pt�1t ] xt= Z dyt Gyt [ŷt�1t ;Pt�1t ] Byt= Bŷt�1t : (70)8



For p(x1) the above calculation gives, x̂01 = B� (71)Similarly, for the covariance we �nd,Ht�1t = Z dxt p(xtjxt�1) (xtxt � x̂t�1t x̂t�1t )= Z dxt Z dyt Gxt [Byt;R] Gyt [ŷt�1t ;Pt�1t ] (xtxt � x̂t�1t x̂t�1t )= Z dyt Gyt [ŷt�1t ;Pt�1t ] (R+BytytBT � x̂t�1t x̂t�1t )= R+B(Pt�1t + ŷt�1t ŷt�1t )BT �Bŷt�1t ŷt�1t BT= R+BPt�1t BT : (72)The covariance for p(x1) is then given by, H01 = R+B�BT (73)A Lemma'sLemma 1 Let Gy[�;�] denote a normal density with mean � and covariance �. We have the followingidentities, Gx[Ay;�] = k1(x) Gy[(AT��1A)�1AT��1x; (AT��1A)�1]; (74)Gy[a;A] Gy[b;B] = Gy[(A�1 +B�1)�1(A�1a+B�1b); (A�1 +B�1)�1] Ga[b;A+B]: (75)Also, if we write z = [y;x], � = [�y;�x] and � = h �yy �yx�xy �xx i, then we have,y � Z dx Gz[�;�] = Gy[�y;�yy] (76)yjx � Gz[�;�]Gx[�x;�xx] = Gy[�y ��yx(�xx)�1(�x � x);�yy ��yx(�xx)�1�xy] (77)As a corollary we notice that E[yjx = �x] = E[y] (78)Lemma 2 Consider a d� d matrix P > 0, a k� k matrix R > 0 and a k� d matrix B, where P > 0 impliesaTPa > 08 a (i.e. positive eigenvalues). The following equalities hold,(P�1 +BTR�1B)�1 = P�PBT (BPBT +R)�1BP (79)(P�1 +BTR�1B)�1BTR�1 = PBT (BPBT +R)�1 (80)B Matrix IdentitiesIn the derivations to follow, the following idetities are useful,aTAb = tr[AbaT ] (81)tr[AB] = tr[BA] (82)@@Atr[AB] = BT (83)@@Atr[ATB] = B (84)log det[A] = � log det[A�1] (85)@@A log det[A] = (AT )�1 (86)9



C Lag-One Covariance SmootherIn the E-step of the EM algorithm that estimated the parameters of the KF, we needed the �lter and smootherequations. However, one quantity remains undetermined, which is the so called lag-one-covariance-smoother,P�t;t�1. This quantity is only needed backwards. First we will derive the initial value the backward recursions,Ptt;t�1 = E[~ytt~ytt�1] (87)= E[f~yt�1t �Kt(xt �Bŷt�1t )gf~yt�1t�1 � Jt�1Kt(xt �Bŷt�1t )g] (88)= E[f~yt�1t �Kt(B~yt�1t + vt)gf~yt�1t�1 � Jt�1Kt(B~yt�1t + vt)g] (89)where we used (11), (39) and (47) with � = t. Next, we write this out and use that both ~yt�1t�1 and ~yt�1t areindependent of vt, which is proved using (14) and (16). This will givePtt;t�1 = Pt�1t;t�1 �Pt�1t BTKTt JTt�1 �KtBPt�1t;t�1 +Kt(BPt�1t BT +R)KTt JTt�1 (90)= (I�KtB)APt�1t�1; (91)where in the last line we used (41) and Pt�1t;t�1 = APt�1t�1, which is proved using the fact that wt�1 isindependent of ~yt�1t�1 (15, 17). If we set t = � we �nd the initial condition,P��;��1 = (I�K�B)AP��1��1: (92)The derivation for the backward recursion is somewhat elaborate. First we write from (47) and (35),~y�t�1 + Jt�1ŷ�t = ~yt�1t�1 + Jt�1Aŷt�1t�1 (93)~y�t�2 + Jt�2ŷ�t�1 = ~yt�2t�2 + Jt�2Aŷt�2t�2 (94)Next, we equate, E[(ŷ�t�1 + Jt�1ŷ�t )(ŷ�t�2 + Jt�2ŷ�t�2)T ] =E[(ŷt�1t�1 + Jt�1Aŷt�1t�1)(ŷt�2t�2 + Jt�2Aŷt�2t�2)T ]) (95)P�t�1;t�2 + Jt�1E[ŷ�t ŷ�t�1]JTt�2 =E[~yt�1t�1~yt�2t�2] + Jt�1AE[ŷt�1t�1~yt�2t�2] + Jt�1AE[ŷt�1t�1ŷt�2t�2]ATJTt�2; (96)where lemma 3 was used several times to get rid of cross-terms. We will now rewrite some of the termsappearing above, E[ŷ�t ŷ�t�1] = E[ytyt�1]�P�t;t�1 =E[(Ayt�1 +wt�1)(Ayt�2 +wt�2)T ]�P�t;t�1 =AE[yt�1yt�2]AT +AE[yt�1wt�2]�P�t;t�1 =AE[yt�1yt�2]AT +AE[(Ayt�2 +wt�2)wt�2]�P�t;t�1 =AE[yt�1yt�2]AT +AQ�P�t;t�1: (97)Next, E[~yt�1t�1~yt�2t�2] = E[f~yt�2t�1 �Kt�1(xt�1 �Bŷt�2t�1)g~yt�2t�2] =Pt�2t�1;t�2 �Kt�1E[(B~yt�2t�1 + vt�1)~yt�2t�2 ] =Pt�2t�1;t�2 �Kt�1BPt�2t�1;t�2; (98)where (39) and (11) was used. Next,E[ŷt�1t�1~yt�2t�2] =E[fŷt�2t�1 +Kt�1(B~yt�2t�1 + vt�1)g~yt�2t�2] =Kt�1BPt�2t�1;t�2: (99)10



Finally we have, E[ŷt�1t�1ŷt�2t�2] = E[(ŷt�2t�1 +Kt�1"t�1)ŷt�2t�2] =E[ŷt�2t�1ŷt�2t�2] =E[yt�1yt�2]�Pt�2t�1;t�2; (100)where the most important ingredient was lemma 4. Putting this together, we haveP�t�1;t�2 =Pt�2t�1;t�2 �Kt�1BPt�2t�1;t�2 +Jt�1AKt�1BPt�2t�1;t�2 � Jt�1APt�2t�1;t�2ATJTt�2 � Jt�1AQJTt�2 +Jt�1P�t;t�1JTt�2 (101)The second line can be rewriten as follows,(I �Kt�1B)Pt�2t�1;t�2 =(I �Kt�1B)Pt�2t�1[Pt�2t�1]�1APt�2t�2 =Pt�1t�1JTt�2 (102)where we used (40) and (48). The third line can be rewritten as,Jt�1A(Kt�1BPt�2t�1;t�2 �Pt�2t�1;t�2ATJTt�2 �QJTt�2) =Jt�1A(Kt�1BPt�2t�1 �Pt�2t�1;t�2AT �Q)JTt�2 =Jt�1A(Kt�1BPt�2t�1 �Pt�2t�1)JTt�2 =�Jt�1A(I�Kt�1B)Pt�2t�1JTt�2 =�Jt�1APt�1t�1JTt�2; (103)where again (40) and (48) was used, and the fact that,Pt�2t�1 = Pt�2t�1;t�2AT +Q (104)which can be derived analoguesly to (36). Finally, putting this together we derive the lag-one covariancesmoother, P�t�1;t�2 = Pt�1t�1JTt�2 + Jt�1(P�t;t�1 �APt�1t�1)JTt�2: (105)
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