
Chapter 1
Introduction

Two friends, one living in the city and the other on the family farm, describe to
one another the experiences of everyday life. The farmer conjures up pastoral
images, acres of wheat swaying in a gentle breeze, the sweet smells of spring,
and the songs of the birds. The city dweller recounts scenes of thousands
of people emerging from the train station, the inescapable odors of traffic,
and the throbbing beat of a street musician's drums. It would seem that these
sensory experiences are as different as one could imagine, yet they share with
all our sensory experiences one crucial feature: In each case, our perception
of the world is constructed out of the raw data sent to our brains by our
sensory nerves, and in each case these data come in the same standard form-
as sequences of identical voltage pulses called action potentials or "spikes."

When we see, we are not interpreting the pattern of light intensity that falls
on our retina; we are interpreting the pattern of spikes that the million cells of
our optic nerve send to the brain. When we hear, we are not interpreting the
patterns of amplitude and frequency modulation that characterize the acous-
tic waveform; we are interpreting the patterns of spikes from rougWy thirty
thousand auditory nerve fibers. All the myriad tasks our brains perform in the
processing of incoming sensory signals begin with these sequences of spikes.
When it comes time to act on the results of these computations, the brain
sends out sequences of spikes to the motor neurons. Spike sequences are the
language for which the brain is listening, the language the brain uses for its
internal musings, and the language it speaks as it talks to the outside world.

If spikes are the language of the brain, we would like to provide a dictionary.
We would like to understand the structure of this dictionary, perhaps even
providing the analog of a thesaurus. We would like to know if, as in language,
there are notions of context that can influence the meaning of the individual
words. And of course we would like to know whether our use of the linguistic
analogy makes sense. We must travel a long road even to give these questions
a precise formulation. Webegin at the beginning, more than two centuries ago.
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2 Introduction

1.1 THE CLASSICAL RESULTS

Our understanding of how the sensory world is represented in the electrical
activity of the sensory nerves is limited, first and foremost, by our ability
to record this activity. Indeed, the history of experiments on the electrical
activity of nerves is intertwined with the history of electrical measurements
more generally. The science of electricity as we understand it today began
with Galvani and Volta in the 1700s (Pera 1986). Galvani observed that the
muscles of a frog could be made to twitch when touched with a piece of
metal, and he believed that the metal evoked "animal electricity" in the muscle.
Volta suspected that the electricity was generated at the contact point itself,
and that similar effects should be observable from a contact between different

inorganic materials. Volta was right, and the pursuit of his ideas led him to
what we now call a Voltaic pile, the first real battery. The fact that electricity
was not the special provenance of animals was one of the first nails in the
coffin of vitalism.

Galvani and Volta made macroscopic measurements. Their biological
preparations consisted of large hunks of muscle-often the entire muscle-not
what we now know to be the single muscle fibers or motor neurons that make
up these tissues. The notion that the bodyis constructed from cells emerged
only through the efforts of the nineteenth-century microscopists, which culmi-
nated in the beautiful observations of Ramon y Cajal on the cellular nature of
the brain itself (CajalI909-11). As a more microscopic picture of the nervous
system began to take shape, it seemed natural to ask how the activity of indi-
vidual cells might relate to our perceptions. Milller developed the doctrine of
specific nerve energies, according to which the identity of a sensory stimulus
is represented by the fact that certain nerve fibers, and not others, are activated
by that stimulus (Boring 1942). Helmholtz provided evidence for this view
in his analysis of the inner ear, arguing that cells at different locations along
the cochlear spiral are sensitive to different frequencies of sound (Helmholtz
1885). These discussions from the late nineteenth century form the founda-
tion for much of our current thinking about the nervous system. When we
read about a computational map in the cortex (Knudsen, du Lac, and Esterly
1987), where an array of neurons decomposes incoming signals according to
the values of different component features, we are reminded of Helmholtz,
who realized that the array of auditory nerve fibers would decompose sound
into its component frequencies.

Testing the ideas of Helmholtz and Milller requires the direct observation of
electrical activity in individual sensory neurons, not just the summed activity
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Figure 1.1
Schematic of Adrian's apparatus for recording the electrical activity in a nerve fiber.
The fiber itself is at the far left. Adrian placed the fiber across two electrodes and
measured the difference in the voltage at these two points along the nerve. The signal
was amplified and used to control a mercury column, at the far right. Records were
obtained by scanning a piece of film behind the mercury column, an example of which
is shown in Fig. 1.3. Redrawn from Adrian (1926).

of a nerve bundle. But the electrical signals from individual cells are very
small, at least when seen by an observer outside the cell. To pick up these
small signals required a new method of low noise amplification, and this was
provided in the first decade of this century by the vacuum tube. Using these
new devices at Cambridge University, Lucas (1917) built instruments which
allowed the recording of microvolt signals in bandwidths of several kiloHertz.
We should remember that these experiments predate the oscilloscope, so even
the display of submillisecond signals posed a significantproblem. The solution
to this problem, together with a general schematic of the instruments, is shown
in Fig. 1.1. Lucas, sadly, died young, and the task of using these instruments
fell to E. D. Adrian. In the space of roughly a decade, Adrian learned much of
what we know to this day about the problem of neural coding. Independently,
H. K. Hartline made many of the same discoveries. We follow the line of
reasoning laid out by Adrian, and return shortly to some special features of
Hartline's observations.

The classic early work of Adrian is contained, primarily, in a series of pa-
pers published in 1926 (Adrian 1926; Adrian and Zotterman 1926a, 1926b).
Adrian summarized these results and their implications in a (still) very read-
able monograph, The Basis of Sensation (1928). One can trace the evolution
of Adrian's thinking in two subsequent books (Adrian 1932, 1947).
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Adrian's experiments established three fundamental facts about the neural
code. First, he saw that individual sensory neurons produce stereotyped action
potentials, or spikes. This is the all-or-none law, which had already been estab-
lished for muscles and motor neurons: Incoming stimuli either produce action
potentials, which propagate long distances along the cell's axon, or they do
not; there are no intermediate signaling mechanisms. This means that a single
neuron can provide information to the brain only through the arrival times of
the spikes.

To make Adrian's observations a bit clearer, we look at a modem version of
the same experiment. In Fig. 1.2 we show raw data from a fine tungsten wire
electrode which has been placed close to a single neuron in the brain of a fly;
the voltage at this electrode is measured relative to that at a reference electrode
placed in the body fluids. Although the trace is noisy, there are clear, stereo-
typed events that can be isolated by appropriate filtering. These are the action
potentials or spikes produced by this neuron and seen from outside the cell.
The observation of all-or-none responses raises several questions:l Why does
the nervous system choose this mode of communication? How is the stereo-
typed action potential waveform selected and stabilized? Is this mechanism
universal?

Action potential propagation is an active process-the cell expends energy
to produce and transmit a spike, and the energy expenditure increases the
farther the spike must travel. In the absence of active processes, the electrical
properties of cell membranes are such that a pulse starting at one end of a
cell would spread and decay rather than propagating at constant velocity, and
the characteristic decay lengths are on the order of one millimeter (Hodgkin
and Rushton 1946).Therefore, passive mechanisms are inadequate for sending'
signals over long distances, such as the roughly one meter from your fingertips
to your spinal cord, or even from one area of the cortex to a neighboring area;
action potentials provide the means for such long distance communication. On
the other hand, cells that send signals only over short distances, such as within
the retina or even across the body of a small animal, need not generate action
potentials and can, instead, operate entirely with "graded" voltage responses to .
sensory stimuli (Roberts and Bush 1981); we will see examples of this more
continuous mode of neural signalling in section 3.1.4.

1. The experiments and theoretical developments which provided the answers to these questions
are by now classic chapters in the history of neuroscience (Aidley 1989). We provide only a brief
summary, but we encourage the reader to look at the original papers, as well as the lovely text
by Katz (1966). Some of the history is recounted in the essays collected for the one-hundredth
anniversary of the Physiological Society (Hodgkin et al. 1977).
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Figure 1.2

All-or-none coding by action potentials. Each action potential generated by the cell
has a similar shape. Thus action potentials are the elementary units of the neural code.
The top panel shows the difference between the voltage recorded with a fine tungsten
wire placed near a cell in the fly's brain and that recorded with a reference electrode
placed in the body fluid. The middle panel shows the same voltage after band-pass
filtering to separate the relatively high frequency components in the action potential
from low frequency noise; after filtering, the shapes of individual action potentials are
quite similar. At the right, five action potentials are shown overlaid on an expanded
time scale. This gives an impression of the shape and of the reproducibility of the time
course. The bottom panel shows timing pulses generated electronically by a threshold
discriminator circuit.
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The local circuit properties of a cell membrane include active elements,

conductances that are modulated by voltage changes and are electrically in se-

ries with power supplies (or, effectively, batteries) that are maintained by ion

pumps; these pumps in turn are powered by chemical energy from the cell's
metabolism. Hodgkin and Huxley (1952a, 1952b, 1952c) analyzed the electri-

cal dynamics of the cell membrane in the giant axon of squid, and showed that
these dynamics could be described with relatively simple phenomenological
models of conductances that depend on voltage and are selective for different
ions. When these local, active elements are assembled into a long cable, such

as the axon, the nonlinear dynamics of the conductances select a stereotyped

pulse which can propagate at constant velocity, while all other voltage changes
eventually decay; the great triumph of this work was to show that this pulse

has a shape and speed essentially identical to the observed action potentials

(Hodgkin and Huxley 1952d). The mathematics of pulse selection has its roots
in the nineteenth century, but a complete theory came much later (Aronson and
Weinberger 1978), and the Hodgkin-Huxley equations continue to provide the

inspiration for interesting mathematics and physics problems.
Although their analysis was purely phenomenological, the form of the

Hodgkin-Huxley equations suggested a microscopic picture in which the
conductances selective for different ions correspond to different molecular ele-

ments, or channels, in the membrane, and the modulations of the conductance

correspond to transitions among discrete states of these channel molecules.
Continuing advances in low noise amplification made it possible to resolve
the electrical noise generated by spontaneous transitions among the different
channel states, and finally to detect the currents flowing through single chan-

nel molecules (Sakmann and Neher 1983). Measurements on the properties of

individual channel molecules, together with the techniques of modem molec-

ular biology, have made it possible to identify a great diversity of channel

types (Hille 1992), but these studies also demonstrate that many features of
channel structure and function are strongly conserved throughout the animal

kingdom (Jan and Jan 1994). This universality of mechanism at the molecular
level harks back to Adrian's observations on the universality of spike encod-

ing. Over the years, Adrian and his colleagues recorded the activity of sensory
neurons from an enormous variety of different sensory systems in different an-

imals. Although the quantitative details vary from neuron to neuron, it seems

that the principles are universal.
The second of Adrian's fundamental observations was that, in response to

a static stimulus such as a continuous load on a stretch receptor, the rate of

spiking increases as the stimulus becomes larger. The raw data from Adrian's
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Figure 1.3
Firing rate as a function of stimulus strength, adapted from Adrian and Zotterman
(1926a). The spikes in these panels are visible as the fluctuations riding on the black-
white interface. A time marker is shown on top. Adrian and Zotterman measured the
relation between the force applied to a muscle and the firing rate in a stretch receptor
embedded in the muscle. Different forces were generated by hanging weights with dif-
ferent masses from the muscle. This type of experiment established that the frequency
of firing in sensory neurons increased with increasing stimulus strength.

original demonstration of this principle is shown in Fig. 1.3, and a quantitative
analysis is shown in Fig. l.4a. Thus the rate, or frequency, of spikes indicates
the intensity of the stimulus. To be a bit more precise, the number of spikes
in a fixed time window following the onset of a static stimulus represents the
intensity of that s~ulus. This is the idea of rate coding.

The third of Adrian's discoveries was that if a static stimulus is continued

for a very long time, the spike rate begins to decline, as illustrated in Fig. l.4b.
This is called adaptation, although this term is also used more generally to
describe a dependence of the neural response on the history of stimulation.
Adrian suggested that this physiological phenomenon corresponds to percep-
tual phenomena wherein we become gradually unaware of constant stimuli.

As we have tried to find a precise modern formulation for the problem of
neural coding, we have been struck by the extent to which the ideas of Adrian
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Figure 1.4
Rate coding and adaptation. (a) Average firing rate of a stretch receptor as a function
of the weight applied to the muscle, in an experiment similar to that of Fig. 1.3. (b)
Decrease in firing rate with time following the onset of a static stimulus at t = 0,
adapted from Adrian (1926). This desensitization, or adaptation, is a general property
of neural coding.
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and Hartline have formed the paradigm for subsequent exploration of the ner-
vous system. On the one hand this must mean that their early experiments
captured essential and universal features of the neural code. On the other hand
one must worry that, in following this single line of ideas, some crucial points
may have been missed.

In the first experiments on single sensory neurons the stimulus was often
defined by a single parameter. This parameter, such as the load on a stretch
receptor, was held fixed while the stimulus was on. But naturally occurring
stimuli are defined by a much larger number of parameters. In vision, for
example, a small region of the visual field may be described by its overall
luminance, but also by its contrast relative to the background, the size and
shape of any features in the region, the positions and orientations of such
features, their color, depth, and so on. By analogy with the Adrian-Hartline
observations on spike rate as a function of stimulus intensity, one can plot
the responses of a visual neuron as a function of these multiple parameters.
This leads to the notion of feature selectivity, in which the cell's response
.depends most strongly on a small number of parameters and is maximal at
some optimum value of these parameters.

Precursors to the notion of feature selectivity can be found in the work of
Hartline and collaborators, who studied the responses of single neurons from
the compound eyes of the horseshoe crab Limulus polyphemus. In addition
to reproducing Adrian's results concerning rate coding, Hartline found that
the stimulus whose strength was coded by one neuron reflected the difference
between the light intensity at the location of that cell and the intensity at neigh-
boring cells. Thus the crab retina has an enhanced response to spatial contrast
or edges. Hartline, Ratliff, and coworkers suggested that this enhancement is
connected to the perceptual phenomenon of Mach bands, shown schematically
in Fig. 1.5. The unraveling of the retinal circuitry responsible for contrast en-
hancement led to a long sequence of now classic papers (Ratliff 1974).

The concept of feature selectivity was clearly enunciated by Barlow (1953a,
1953b), who was Adrian's student. Recording from retinal ganglion cells in
the frog, he showed that the response of these cells to a spot of light at first
grows with the area of the spot, but then declines if the spot exceeds a crit-
ical size, as summarized in Fig. 1.6a. The portion of the visual world that
can influence the activity of a neuron is called the receptive field of that cell,
and Barlow's results can be described as a "center-surround" organization of
the receptive field: spots within a small region (the center) excite the cell,
but spots just outside this region (in the surround) inhibit the cell (Fig. 1.6b).
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Figure 1.5
Mach bands at the edge of a shadow. The "Light curve" is based on physical calcula-
tions of the luminance at the edge of a shadow.The point Ctis in the fully illuminated
space, the point f3is at the outer edge of the shadow, the point y is at the inner edge of
the shadow,and the point <5is in the full shadow.The thicker line represents the appar-
ent luminance, or "Sensation curve" actually observed. The maximum and minimum of
these curves correspond to the light and dark Mach bands that arise from differencing
mechanisms in the visual system that enhance contrast. Redrawn from Ratliff (1974).

To a good approximation these receptive fields are circularly symmetric. Es-
sentially identical receptive fields were found in cat retinal ganglion cells by
Kuffler(1953). In many cases the excitation and inhibition are balanced so that
spatially uniform stimulation produces no response. Another interpretation is
that these cells are tuned to objects of a given apparent size, perhaps that of the
bugs the frog is hunting. The picture of frog retinal ganglion cells as special-
ized "bug detectors" was emphasized by Lettvin and coworkers (1959). In the
limiting case this view presents sensory neurons as yes/no devices, signaling
the presence or absence of certain elementary features.

The importance of feature selectivity was strongly supported by the ob-
servations of Kuffler's colleagues Hubel and Wiesel (1962). They found that
many cells in cat visual cortex are selective not only for the size of objects
(e.g., the width of a bar) but also for their orientation. As in the Barlow-Kuffler
experiments, Hubel and Wiesel observed this selectivity by counting the num-
ber of spikes the cell produced in response to the presentation of a static stim-
ulus or in response to the motion of the stimulus through the cell's receptive
field. Hubel and Wiesel presented a scenario for how this orientation selectiv-
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Figure 1.6
Center-surround receptive fields in retinal ganglion cells. (a) Sensitivity of retinal gan-
glion cells in the frog as a function of the radius of the light stimulus; sensitivity is
defined as the light intensity required to elicit a fixed number of spikes. As the stimulus
size is increased, the sensitivity initially increases, but then begins to decrease when the
stimuli are larger than 0.2 mm in radius. This behavior was seen in both "on" ganglion
cells, which respond to an increase in light intensity in the central region of their re-
ceptive field, and in "off" ganglion cells, which respond to a decrease in light intensity.
(b) Receptive field organization suggested by Barlow to explain measurements such
as those in (a). Light falling within the central excitatory region of the cell's receptive
field causes an increase in the number of spikes, while light falling in the inhibitory
surround causes a decrease in the number of spikes, indicated here as a negative sensi-
tivity. Maximal response to a spot of light is achieved when the stimulus just covers the
entire receptive field center.
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ity could be built out of center-surround neurons in lower levels of the visual

system, making explicit the intuitive notion that higher percepts are built out
of elementary features. Finally, they found that neighboring neurons are tuned

to neighboring orientations, so that feature selectivity is mapped over the sur-

face of the cortex. This notion of cortical mapping, presaged by Mountcastle's

(1957) observations on the responses of cells in the somatosensory cortex, re-

vealed order amid the seemingly impenetrable mass of cortical circuitry. This

discovery led, in turn, to the investigation of how this order develops out of the
more amorphous circuitry of the embryonic brain. The ideas of feature selec-

tivity, cortical maps, and self-organization of maps during development have
dominated the exploration of cortex ever since (Hubel and Wiesel 1977).

If we return to the original Adrian-Hartline experiments on sensory neu-

rons, we see that one could extend the description of the neural code in two
very different directions. One direction is to study the coding of multiparam-

eter stimuli, which has been followed extensively in the exploration of the
visual system. A second direction is to use stimuli with realistic time depen-

dencies. In a natural environment, sensory inputs are not broken into discrete

presentations, and they are not simply turned on and off. More complex dy-
namic signals have been used in the study of the auditory system, where the

main issues concern recognition and classification of temporal waveforms. But

even in these experiments there is a tendency to approximate real dynamic sig-
nals with more elaborate but still essentially stationary signals. For example,

the coding of vowel sounds has often been studied using continuous, periodic
stimuli whose power spectra approximate those of real vowels.

A primary concern in this book is to understand how the nervous system

represents signals with realistic time dependencies. The problem of coding for
nearly static stimuli is very different from the problems faced by the brain un-
der more natural conditions. In particular, the focus on time-dependent signals

forces us to think about the significance of much smaller numbers of spikes.
But we are getting ahead of ourselves.

Do the ideas of rate coding, feature selectivity, and cortical mapping tell us
what we want to know about the neural code? Certainly the fact that neurons

in deeper layers of the brain are selective for more complex features tells us
something about the kinds of computations that are carried out as sensory
signals are passed from one stage of processing to the next, although it is

dangerous to take a hierarchical or sequential view of sensory processing too

literally. The idea of rate coding leaves open the question of whether other
features of the spike train-generally grouped under the catch phrase timing-

carry meaningful information, and indeed this question has been central to
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many discussions of neural coding. The idea of mapping leads us to think
about the representation of the sensory world in arrays of neurons; it also leads
to the concepts of ensemble or population coding, which are active topics of
current research.

The classical results on the neural code suggest many avenues for explo-
ration. We cannot dojustice to all the different paths taken by different investi-
gators. In the following section we hope to make precise a more limited set of
questions, which, with luck, we can answer in the space of the remaining text.

1.2 DEFINING THE PROBLEM

to

What would it mean to say that we "understand" the neural code in a particu-

lar region of the nervous system? How do we quantify the notion that the spike
train of a single cell "conveys information" about the sensory world? In what

sense is a particular sequence of spikes the "right answer" to some compu-

tational problem faced by the brain? We search for sharper versions of these

questions by forcing ourselves to adopt a more precise and more mathematical
language. In talking about the nervous system we routinely make colloquial
use of terms such as code, information, and reliability. All of these words can

be given precise mathematical definitions, and we hope, through the remainder
of the text, to convince the reader that these definitions provide a clear guide to

the design and analysis of new experiments. In striving for precision we shall

see the emergence of some new ideas. We begin, however, by revisiting an old
idea, the homunculus.

The homunculus is an often derided concept in discussions of the brain. We

recall that this metaphor conjures up a little man-or, in a lovely variant by
Michael Land and Simon Laughlin (Fig. 1.7), a little fly-who observes the

responses of his own sensory neurons and finally forms the percepts that the

organism experiences. The problem with this picture is that it never gets to the
essence of what it means to perceive and to experience the world. On the other

hand, as explorers of the nervous system we place ourselves, inevitably, in the

position of the homunculus-we observe the responses of sensory neurons and

try to decide what these responses could mean to the organism. This problem
of assigning meaning to the activity of sensory neurons is the central issue in
our discussion of the neural code.

It is easy to imagine that the task of the homunculus is trivial-after all, he

just watches a projected image of the world as it flashes through the brain. But
this projected image is encoded in the patterns of action potentials generated

by the sensory neurons. It is not at all clear what the homunculus would have
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Figure1.7
The Flynculus. Doodle by M. F. Land, quotation, "The little fly sitting in the fly's brain
trying to fly the fly," from S. B. Laughlin, with permission.

to do, even in principle, to make sense out of these encoded data. We propose
that "understanding the neural code" means that we would know how to make
sense out of the bewildering array of spike trains streaming in from the sense
organs: If we understand the code, we can function as the homunculus.

When we ask what a spike train means, or what it can tell us about the
world, we need to set some boundaries for the question, or, equivalently, a
context for the answer. If we live in a world with only two possible sensory
stimuli, we can ask how the homunculus could best use the spike train data
to make a decision about which stimulus in fact occurred. This decision rule

would constitute a complete understanding of the neural code, assuming that
the world offers just two possible signals.

In many psychophysical discrimination experiments (Green and Swets
1966), a world of two alternatives is created artificially, and the subject must
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n

solve the problem of choosing between these alternatives. This binary deci-
sion problem provides a convenient context for asking questions about the
reliability of our perceptions, and we shall see that it is also useful for inves-
tigating the reliability of neurons. But it is not enough to build a homunculus
that functions in a world of two alternatives; we want to ask our question about
the meaning of spike trains in a context that approaches the complexity of the
natural world.

Under natural conditions, the stimulus that will appear in the next brief time
window is not known to us in advance. Instead the stimulus is chosen from
an infinite set of alternatives. On the other hand, these alternatives are not all

equally likely. While there are blue spruce trees, green trees do not suddenly
turn blue (or red or yellow either). Natural stimuli develop in time, and these
dynamics have some underlying regularity or structure. This structure has a
deterministic component, as when a leaf falls downward according to New-
ton's laws. But since we do not know all the forces that shape the dynamics of
sensory stimuli, some aspects of these stimuli are unpredictable, as when the
falling leaf is deflected by a gust of wind. The result is that natural signals are
presented to us at random, but these signals have correlations that reflect their
origins in deterministic physical processes.

Rather than inhabiting a world of two alternatives, we thus inhabit a world
of random but correlated time dependent signals. The time dependence is cru-
cial, because it means that we cannot wait forever to decide what we are look-
ing at. Not only does biology press for quick decisions-we must catch our
prey and not be caught by predators-the physics of our environment is such
that any simple averaging for long periods of time will average away the very
signals that interest us. The task of the homunculus, then, is not to create a
static image of the sensory world from the input spike trains, but rather to give
a sort of running commentary or simultaneous translation. We emphasize that
this running commentary need not be, and most likely cannot be, a compre-
hensive reconstruction of the world around us.

To give meaning to the spike trains nonetheless requires that we recreate at
least some aspects of the continuous time dependent world that is encoded in
discrete sequences of spikes. From our experience in the laboratory we know
that when forced to interpret rapidly changing signals we are very susceptible
to noise; usually we try to combat noise by averaging in time or by averaging
over repeated presentations of the same signal. But the homunculus is not free
to set arbitrary averaging times, and he certainly cannot ask for a second,
identical copy of the immediate past. On the contrary, the homunculus (and
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the animal as well!) has to reach conclusions about the world from just one
example of the spike train in each of his sensory neurons.

In generating a running commentary on the meaning of spike trains we shall
have to deal with whatever level of noise is present in these data. Ideally, our
interpretation of the spike trains should be as reliable as possible given this
noise, and the statistically sophisticated homunculus would report confidence
levels on his estimates of what is happening in the world. If understanding
the neural code means building a homunculus, we can compare two different
candidate homunculi-two different candidates for the structure of the neu-

ral code-by comparing the accuracy of their inferences about events in the
sensory world.

We are closing in, then, on a more precise definition of the problems in
understanding the neural code. We place ourselves in the position of the ho-
munculus, monitoring the spike trains of sensory neurons as stimuli vary in
time along some unknown trajectory. We must generate a running commen-
tary on the identity of these stimuli, using only the spike train data as input.
Our inferences about events in the world will have some limited accuracy, and
we shall have to quantify this accuracy.Out of many possible homunculi, there
is one that tells us as much as possible about the world given the noise in
the spike train data itself. The performance of this best homunculus will re-
flect a compromise between averaging in time to combat noise and responding
quickly to keep up with the dynamics of the world, and we shall have to be
precise about these time scales.

The construction of a complete homunculus, or even the complete flyncu-
Ius of Fig. 1.7, is a daunting task. In the fly, visual signals stream in along
thousands of parallel paths reflecting the array of lenses in the compound eye,
and in ourselves and our primate cousins the corresponding numbers are three
orders of magnitude larger. There are a few special cases, such as the moths
discussed in section 4.1.1 (Roeder 1963), for which it might be possible to
monitor all of the spike trains that encode one sensory modality, but in general
this is hopeless. As we have noted, however, there is a long tradition of try-
ing to make sense out of the responses of single neurons, always recognizing
that one cell can tell us about only a small piece of the sensory environment.
In this tradition, most of this book is about the problem of an impoverished
homunculus who looks at the spike train of just one neuron at a time; we take
a brief look at the problem of multiple neurons in section 5.1. We thus have
a clear question, amenable to experimental investigation: What can the spike
train of this one neuron tell us about events in the world?
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1.3 CENTRAL CLAIMS OF TIllS BOOK

Nearly seventy years ago, Adrian summarized the first generation of experi-
ments on neural coding (Adrian 1928). We have argued that, even today, this
classic work contains a large fraction of what we know about the language of
the brain. Forty years later, Perkel and Bullock (1968) provided an encyclope-
dic summary of the state of the field, a handbook of diverse candidate coding
strategies in different systems. What can we add after all these years?

We believe that there has been substantial progress in both the formulation
and the resolution of three major issues regarding coding by single neurons.
These three points form the core of our presentation:

1. Representation of time-dependent signals. In a variety of sensory systems,
single neurons produce on the order of one spike per characteristic time of
stimulus variations-a sparse temporal representation. This is in direct contra-
diction to a simple, intuitive implementation of the rate coding idea, since the '

rate is an average quantity not available from a single spike. Sparse temporal
codes can be decoded by simple algorithms, even when the encoding is a com-
plex nonlinear process. Thus the problem of decoding-the problem solved by
our homunculus-may be simpler than the classical problem of encoding.

2. Information rates and coding efficiency. The focus on signals with realistic
time dependencies leads to the demonstration that single neurons can transmit
large amounts of information, on the order of several bits per spike. In at
least one case, signals with more natural temporal correlations are coded more
efficiently, so that the spike train provides more information with roughly
the same number of spikes. These high rates come close to saturating the
fundamental physical limits to information transmission.

3. Reliability of computation. Understanding the reliability of the nervous
system requires that we understand the code which the system uses to rep-
resent the answers to its computational problems; the study of neural coding
is thus tied to much broader issues of neural computation. In several systems
there is agreement between at least two of three fundamental quantities: The
reliability of behavior, the reliability of single neurons, and the fundamental
physical limits to reliability imposed by noise in the sense data itself. It is clear
that the approach to the physical limits is closest for the more natural tasks of
processing time-dependent signals.

These three ideas provide, we hope, a clear answer to the questions formu-
lated in section 1.2. Decoding the spike train provides a literal construction of
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the "running commentary" that we require from the homunculus, the measure-
ment of information transmission rates quantifies how much our impoverished
homunculus can tell us by looking at just one neuron, and the observations on
reliability place this information on a meaningful scale relative to the capabil-
ities of the whole organism.

In exploring these three issues, we will refer to experimental results from
many different systems, obtained by many different groups over a period of
several decades. The common thread running through these diverse studies
is the attempt to quantify the behavior of neurons, specifically under condi-
tions that approximate the function of the nervous system in the life of the
organism. Much of the text is also concerned with methodology, reviewing
several theoretical approaches that have been proposed as guides to the design
and analysis of quantitative experiments. Many of our readers may reasonably
wonder whether the effort of building up this more mathematical framework
will be rewarded. One reason for persevering is that the quantitative analysis
of neural coding leads to surprising results. As devices for transmitting and
processing information, neurons are doing much more than one might have
expected, and in a precise sense they are doing almost as much as is physi-
cally possible. Even simple quantitative qQestions-how many spikes carry a
meaningful signal?-have surprising answers. Thus we claim that the results
of a quantitative approach are sufficiently extreme that they begin to alter our
qualitative conception of how the nervous system works.


