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Kass, Robert E., Valérie Ventura, and Emery N. Brown. Statistical
issues in the analysis of neuronal data. J Neurophysiol 94: 8–25,
2005; doi:10.1152/jn.00648.2004. Analysis of data from neurophysi-
ological investigations can be challenging. Particularly when experi-
ments involve dynamics of neuronal response, scientific inference can
become subtle and some statistical methods may make much more
efficient use of the data than others. This article reviews well-
established statistical principles, which provide useful guidance, and
argues that good statistical practice can substantially enhance results.
Recent work on estimation of firing rate, population coding, and
time-varying correlation provides improvements in experimental sen-
sitivity equivalent to large increases in the number of neurons exam-
ined. Modern nonparametric methods are applicable to data from
repeated trials. Many within-trial analyses based on a Poisson assump-
tion can be extended to non-Poisson data. New methods have made it
possible to track changes in receptive fields, and to study trial-to-trial
variation, with modest amounts of data.

I N T R O D U C T I O N

Technical advances have made available new methods for
collecting, storing, and manipulating electrophysiological data.
Investigations may now not only characterize neuronal activity
in anatomically well defined regions, but they can also examine
dynamics of neuronal response and their relationship to behav-
ior. Although elementary methods of data analysis [such as
t-tests or visual examination of the peristimulus time histogram
(PSTH)] remain useful for many purposes, the growing com-
plexity of neuroscientific experiments, often examining subtle
changes on a comparatively fine timescale, requires careful
attention to statistical methods for data analysis. In this over-
view we discuss some of the fundamental data analytical issues
that face researchers in neurophysiology, illustrating the gen-
eral points with the problems of describing the evolution of a
neuron’s firing rate across time, finding accurate population
codes, and assessing time-varying correlation between 2 neu-
rons. In each case recent work has provided a statistical
technique that outperforms previous methodology, boosting
the scientific information as effectively as if the number of
experimental trials, or the number of neurons, had been in-
creased by a substantial factor. We also indicate some of the
ways modern statistical procedures can accommodate impor-
tant complexities, such as dynamic changes in temporal and
spatial aspects of hippocampal place cell firing and trial-to-trial
variability in cortical neurons recorded from behaving animals.
Our review supplements the brief and general guidance offered

by Curran-Everett and Benos (2004), and may be regarded as
an update to the early work of Perkel et al. (1967a,b).

The new field of computational neuroscience uses detailed
biophysical models and artificial neural networks to study
emergent behavior of neural systems and the way neural
systems represent and transmit information (e.g., Dayan and
Abbott 2001). Statistical methods have become an essential
complement: in addition to their ubiquitous role in summariz-
ing experimental data, they provide estimates of biologically
relevant parameters, assessments of uncertainty about them,
and a formalism for evaluating the fit of theoretical predictions
to observed data. The statistical paradigm begins with informal
investigation of the data, a process that has been named
exploratory analysis (Tukey 1977). Exploratory results, to-
gether with judgment based on experience, help guide con-
struction of an initial probability model to represent variability
in observed data. Typically, this model posits some underlying,
and unobserved, regularity that is coupled with known or
unknown sources of irregularity. Every such model, and every
statistical method, makes some assumptions. These lead to a
reduction of the data to some typically small number of
interpretable quantities. The data may be used, again, to check
the probabilistic assumptions, and to consider ramifications of
departures from them. Should serious departures from the
assumptions be found, a new model may be formed. Figure 1
attempts to highlight the iterative nature of probability model-
ing and model assessment, followed by statistical inference, all
embedded into the production of scientific conclusions from
experimental results (Box et al. 1978). We demonstrate this
process by analyzing data from a hippocampal “place” cell,
using a collection of techniques reviewed in subsequent sec-
tions.

Within the field of statistics there are standards for evaluat-
ing alternative data-reduction procedures. Sometimes methods
that seem intuitive may be shown to work well. In particular,
simple data summaries and graphical displays are often suffi-
cient for demonstrating striking experimental findings, when
noise is small relative to signal, for example, or when addi-
tional sources of variation (beyond those summarized) need not
be made explicit. In more subtle situations, however, intuitive
data summaries may be inconclusive, possibly because they
may make inefficient use of the data. We will illustrate by
considering first an elementary framework for spike count
analysis, where a peculiar yet plausible method of estimating
firing rate will be shown to make inefficient use of the data. We
then work by analogy, showing how, in important problems,
intuitive methods used by neurophysiologists may be equiva-
lent to discarding most of the available data. Our overview
focuses on 3 main points: 1) maximum likelihood and Bayes-
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ian methods are able to use all of the available information to
estimate an unknown parameter (such as a firing rate), 2)
modern nonparametric methods, including the Bootstrap, are

often applicable to neuronal data, and 3) many analyses based
on a Poisson assumption can be extended to non-Poisson data.

I N F O R M A T I O N A N D S T A T I S T I C A L 1 E F F I C I E N C Y

Spike trains recorded in vivo tend to be irregular both within
and across trials. To capture the available information about
stimulus or behavior it is helpful to formulate a reasonably
accurate probability model for the noise. In probability theory
stochastic sequences of event times are called point processes,
and the simplest point process is the Poisson process. A basic
property is that counts of Poisson process events follow Pois-
son distributions. Thus, the simplest assumption one might
make about a spike train is that it may be described as a
Poisson process, and then the resulting spike counts (the
number of spikes in particular windows of time) would follow
Poisson distributions. In this section we use Poisson spike
counts for pedagogical purposes to discuss some fundamental
statistical concepts.

We do not want to give the impression, however, that
Poisson models are to be trusted without critical examination.
Indeed, there are reasons to think it unlikely in principle that
spike trains should follow Poisson processes. Assuming large
numbers of excitatory and inhibitory inputs, in the time-
homogeneous case (meaning that the inputs do not vary sys-
tematically across time, as they would with a time-varying
stimulus), Gerstein and Mandlebrot (1964) showed that a
simple model of voltage variation with a fixed spiking thresh-
old leads to interspike intervals that follow an inverse Gaussian
distribution. (See also Tuckwell 1988.) Spike trains that follow
this model would be non-Poisson. There has been considerable
documentation and discussion of the variability of spike trains
and its sources (an early study is Smith and Smith 1965; see
Shadlen and Newsome 1998, and the references therein).
However, whether a particular set of spike train data should be
considered Poisson is an empirical matter, subject to statistical
examination. Later we discuss methods that either remove the
Poisson assumption in treating counts or substitute a more
general conception of an event–time process.

A parametric statistical model is a probability model with a
fixed set of parameters that may be estimated from the data

For illustrative purposes we consider the analysis of count
data that are assumed to follow a Poisson distribution. If � is
the mean number of times that a neuron fires during some
specified time interval (a, b), then the probability of getting y
spikes during that interval is

p�y��� � e��
�y

y!
(1)

If we assume a particular value for � we may use Eq. 1 to
calculate the probability of observing any specified number of
spikes during the interval (a, b). In this situation � is called
a parameter. Having observed n trials of data y1, y2, …, yn
the obvious estimate of � would be the average number
y� � 1/n �i yi of spikes per trial during the interval (a, b). We
call y� an estimator of �. It is not only intuitive, but is also an

1 To those who want mathematical details on these topics we recommend the
introductory text by Wasserman (2004).

FIG. 1. Formal statistical inference within the process of drawing scientific
conclusions. Probability model building is a prerequisite to formal inference
procedures. Model building is iterative in the sense that tentative models must
be assessed and, if necessary, improved or abandoned.
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example of a very general and generally very good method of
estimation called maximum likelihood (ML), to which we will
return shortly. We will, throughout, follow the standard statis-
tical convention of using �̂ to denote a generic estimator of �,
but often this estimator is obtained by ML.

Evaluation of an estimation procedure has four components

Although the sample mean is an intuitive estimator of the
Poisson mean �, one might dream up alternatives. For exam-
ple, a property of the Poisson distribution is that its variance is
also equal to �; therefore, the sample variance s2 � 1/(n � 1)
�i (yi � y�)2 could also be used to estimate the population
variance �. This may seem odd, and potentially inferior, on
intuitive grounds because the whole point is to estimate the
mean firing rate, not its variance. On the other hand, once we
take the Poisson model seriously the population mean and
variance become equal and, from a statistical perspective, it is
reasonable to ask whether it is better to estimate one rather than
the other from their sample analogues. Our purpose here is to
present a simple analysis that demonstrates the inferiority of
the sample variance to the sample mean as an estimator of the
Poisson mean �. We are going through this exercise so that we
can draw an analogy to it later on.

A statistical estimator is itself subject to random variation: it
is computed from a sample of data, and a new sample (a new
set of n trials) would produce different data and therefore a
different value of the estimator. To study the variation of an
estimator we may calculate its expectation and variance, both
obtained, theoretically, across repeated sets of n trials. The
expectation of both y� and s2 is �; on average, in repeated sets
of trials, the positive errors tend to cancel the negative errors
(they are both unbiased). But how accurate is s2 compared to
y�? Analytical calculation of the variance of each estimator
gives2

V�y�� �
�

n

V�s2� �
�

n
�

2�2

n � 1

where n is the number of repeated trials. Therefore, the vari-
ance of s2 is always larger than that of y� and it is, in this sense,
less accurate: s2 tends to be further from the correct value of �
than y�. For example, if we take n � 100 trials and � � 10, we
find V (y�) � 0.10, whereas V(s2) � 2.12. The estimator s2 has
about 21 times the variability of y�, so that estimating � using
s2 would require about 2,100 trials of data to gain the same
accuracy as using y� with 100 trials. See Figure 2.

This simple analysis is compelling, as long as we are sure
that the data follow a Poisson distribution. Because the distri-
bution of real spike counts may well depart from Poisson, a
realistic comparison of y� versus s2 should consider their be-
havior also under alternative assumptions. In this regard, the
sample mean remains a reasonably good estimator of the
population mean in large samples regardless of the probability

distribution of the spike counts: the sample mean gets arbi-
trarily close to the population mean for sufficiently large
samples (it is a consistent estimator). The sample variance, on
the other hand, does so only if the population variance is truly
equal to the population mean; otherwise, as the sample size
increases it will converge to the wrong value (it is, in that case,
an inconsistent estimator). We return to this issue below.

We now consider the theoretical framework that allows us to
generalize these kinds of results to more complicated situa-
tions. We can list 4 components of formal statistical evaluation
of an estimator: 1) a quantity to be estimated, which is a
numerical characteristic (in mathematical jargon, a functional)
of a probability distribution; 2) an estimator; 3) a criterion
according to which the accuracy of the estimator will be
judged; and 4) a set of assumptions about the (unknown)
probability distribution, which allow us to carry out the eval-
uation of the estimator. In the Poisson case, 1) �, the average
firing rate in our interval of time, was the quantity being
estimated; 2) y� and s2 were the 2 estimators being evaluated; 3)
we considered the variance as our criterion; and 4) we assumed
a Poisson distribution, with the trials being probabilistically
identical and independent.

Concerning item 3), in general terms, a simple and illumi-
nating criterion is mean squared error (MSE), which is com-
puted by squaring the error and then averaging across infinitely
many hypothetical replications of the data. Formally, the MSE
of an estimator �̂ is written as

MSE��̂� � E���̂ � ��2�

where E� represents the expectation (or expected value). By
the linearity of the expectation we also obtain

MSE��̂� � Bias ��̂�2 � V��̂�

where Bias (�̂) � E(�̂) � � represents the average amount by
which the estimator differs from �. This formula is the basis
for what is called the “Bias–Variance trade-off” in comparing
alternative methods. It often happens that one method has
comparatively high bias, whereas the other has comparatively
high variance; MSE takes both into consideration. In the case
of y� and s2, the bias of both is zero, so the MSE is actually
equal to the variance. Thus, the criterion we were applying was
the MSE. MSE is commonly used in studies of alternative
estimation methods.

Fisher information measures the optimal precision with
which a parameter may be estimated from data

In a 1922 paper that laid the groundwork for much of the
statistical theory developed in the 20th century, R. A. Fisher
analyzed the general form of the estimation problem. Fisher
observed that estimators often may be approximated by the
sample mean of some suitably defined random variables so
that, according to the central limit theorem, they will tend to be
approximately normally distributed (Gaussian) for large sam-
ple sizes. Figure 2 shows a pair of histograms of y� and s2 values
calculated from 1,000 randomly generated samples of size n �
100 when the true Poisson mean was � � 10. The asymptotic
normality of the 2 estimators is indicated by the approximately
normal shape of their histograms. (Much of statistical theory is
asymptotic in the sense that it considers behavior when the
sample size becomes arbitrarily large.) In the case of y� and s2,

2 Our use of variance in this pair of equations may be confusing: here it
refers to the variability of an estimator across repeated sets of n trials (i.e.,
across replications of the entire experiment); when s2 is called the sample
variance, the term “variance” instead refers to a computation of variability
carried out across one set of n trials, within a particular experiment.
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both estimators are also centered at the true value of �. In
general, for large samples, the bias of any reasonable estimator
will be small, so that it is at least centered close to the true
value of the quantity it is estimating. Fisher considered the
class of all estimators that were asymptotically normal, with
the correct value as the asymptotic mean and asked what was
the smallest possible variance. This is equivalent to asking
what is the minimal MSE in large samples.

The answer is that the smallest possible variance is the
reciprocal of what is now called Fisher information. Put
differently, the Fisher information gives the best possible
precision of any asymptotically “good” estimator (where pre-
cision is the reciprocal of variance). The statistical efficiency of
an estimator is judged by its variance, or asymptotic variance,
relative to the bound determined by Fisher information. If an
estimator attains the bound it is said to be efficient. Fisher
described efficient estimators by saying they contain the max-
imal amount of information supplied by the data about the
value of a parameter. That is, the information in the data
pertaining to the parameter value may be used well (or poorly)
to make an estimator more (or less) accurate; in using as much
information about the parameter as is possible, an efficient
estimator uses the data most efficiently and reduces to a
minimum the uncertainty attached to it.

For the Poisson model, the Fisher information about � in n
observations is

I��� � n/� (2)

and the large-sample variance bound �/n is obtained by y� so it
is an efficient estimator. On the other hand, use of s2 rather than

y� to estimate � effectively discards 95% of the information in
the data. In general, the Fisher information can be computed
from the probability model, or more precisely, the likelihood,
which we introduce in the next subsection.

Maximum likelihood estimators are efficient

In addition to deriving the information bound, Fisher
showed that the method of maximum likelihood (ML) pro-
duces efficient estimators, i.e., as explained above, this means
that an ML estimator (MLE) automatically has the smallest
possible uncertainty, for large samples.

The MLE is the value of the parameter that maximizes the
likelihood function. To explain what the likelihood function is,
and why one might want to maximize it, let us consider the
Poisson distribution. For any particular value of �, Eq. 1 gives
the probability of observing y spikes during the interval (a, b)
for a single trial. Table 1 displays the value of p(y��) for
several values of y and �. The argument of the probability
density, that is, the quantity that is varying in Eq. 1, is the spike
count y. Because Eq. 1 is a probability density, the sum over all
possible values of y is 1. In Table 1 this corresponds to
summing across rows. The likelihood function reverses what is
held fixed and what is varying: it applies p(y��) with the data
y held fixed and the unknown parameter � allowed to vary.
Reasoning based on the likelihood function continues along
this reversed, or “inverse,” path: having observed a spike count
y, we would find it implausible to think that the correct value
of � was one that would make y an improbable event. Instead,
the MLE maximizes the likelihood function, producing the

FIG. 2. Histograms displaying distributions of y� and s2

based on 1,000 randomly generated samples of size n � 100
from a Poisson distribution with mean parameter � � 10. In
these repeated samples both y� and s2 have distributions that
are approximately Normal (represented by the overlaid
curves). Both distributions are centered at 10 but the values
of s2 fluctuate much more than do the values of y�.

TABLE 1. Equation 1 evaluated at y � 0, 1, … for several values of �, where � is the theoretical mean spike count in the interval (a, b)

�

y
Products of Columns
at y � 4 and at y � 50 1 2 3 4 5 6 �7

3.5 3.0 10.6 18.5 21.6 18.9 13.2 7.7 6.5 2.5
3.75 2.4 8.8 16.5 20.7 19.4 14.5 9.1 8.6 2.8
4 1.8 7.3 14.7 19.5 19.5 15.6 10.4 11.2 3.0
4.25 1.4 6.1 12.9 18.3 19.4 16.5 11.7 13.7 3.2
4.5 1.1 5.0 11.2 16.9 19.0 17.1 12.8 16.9 3.3
4.75 0.9 4.1 9.8 15.5 18.4 17.4 13.8 20.1 3.2
5 0.7 3.4 8.4 14.0 17.5 17.5 14.6 23.9 3.1
5.25 0.5 2.8 7.2 12.7 16.6 17.4 15.3 27.5 2.9
5.5 0.4 2.2 6.2 11.3 15.6 17.1 15.7 31.5 2.7

All values are given as percentages (rounded to the nearest 0.1%). If � � 4.5, the probability of observing y � 1 spikes is 5% and the probability of observing
y � 2 spikes is 11.2%. The greatest probability across the row � � 4.5 occurs for y � 4, where the probability of observing y � 4 spikes is 19%. Similarly,
if � � 5.25, the most likely number of spikes is y � 5. The table also allows us to reverse the process, by reading down the columns rather than across the rows;
we can thereby find the value of � that is most likely to have given rise to a particular y. For example, the column y � 4 has its greatest value at � � 4. Thus
if we observed y � 4, and if the only values of � were those in the table, we would guess the unknown value of � to be 4. If we observed y � 5, then we would
guess that � was 5. The values of � thus guessed are in fact maximum likelihood estimates of � based on a single observation y. The rows contain values of
the probability density p(y��) for various potential values of y, which must add up to 1. The columns are values of the likelihood function for various values
of �, based on the observation y. The columns typically do not add up to 1. In the case of n � 2 trials, Eq. 3 must be applied. For example, if we observed y1

� 5 spikes on trial 1 and y2 � 4 spikes on trial 2, and assuming that the trials are independent, so that L��� � p�y��� � � i�1
n p�yi���, the likelihood function

for � would be equal to the product of the columns at y � 5 and at y � 4. In this case the maximum would be achieved at � � 4.5, assuming once again that
the only possible values of � are those in the table.
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parameter value � that makes y the most probable to have
occurred.

Suppose, now, that we have spike counts y1, …, yn for n
trials. Let us denote the entire set of spike counts, now taken to
be a vector, as y � (y1, …, yn). The likelihood function is then
based on the joint distribution of y

L��� � p�y��� (3)

and the MLE of � is the value that maximizes L(�), that is the
value of � that gives the observed data its maximal probability
of occurring under the assumed probability model. Here, as is
usually the case, the parameter � is allowed to vary continu-
ously, and the MLE is usually obtained numerically by maxi-
mizing the loglikelihood function

log L��� � log L���

The MLE is the value of the parameter that provides the best
fit of the model to the data, where “fit” is defined in terms of
the probability assigned to the data by the model. There are
other possible ways to define fit, but in his 1922 paper, Fisher
pointed out that the MLE is efficient, in the sense stated earlier.
Generally, the great virtues of ML estimation are 1) for large
samples it uses the maximal information (in Fisher’s sense)
available in the data, 2) there are explicit algorithms to com-
pute it even in complicated settings, and 3) there is also an
explicit method of assessing the uncertainty of MLEs.

In the Poisson case, an easy application of calculus shows
that the MLE of � is y�. Earlier we showed that, for estimating
the Poisson parameter �, the mean is much better than the
variance, and then we stated that the mean is efficient in the
sense of having the smallest possible MSE in large samples.
We see here that the efficiency of y� may be considered a special
case of the general result that the MLE is efficient.

Bayes estimators are also optimal in large samples

Closely related to ML estimation, and more powerful in
some circumstances, is Bayesian inference. Bayesian inference
is based on Bayes’ theorem, which is an elementary formula
for computing conditional probabilities of the form P(A�B)
from probabilities of the form P(B�A). The profound implica-
tion of Bayes’ theorem for statistical inference becomes appar-
ent when A signifies an unknown parameter and B signifies the
available data: having observed some data y, Bayes’ theorem
allows us to express our uncertain knowledge about the pa-
rameter � quantitatively, in the form of a probability distribu-
tion p(��y). The inputs to Bayes’ theorem are the likelihood
function p(y��) and a prior distribution p(�) that represents a
priori knowledge about �. To contrast with the prior distribu-
tion, which represents knowledge that logically precedes the
data, the distribution p(��y) produced using the data is called
the posterior. The usual Bayes estimator is the mean of this
posterior distribution.

In the Poisson case, Bayes’ theorem provides p(��y) in terms
of the formula for p(y��) given by Eq. 1. Specifically, accord-
ing to Bayes’ theorem, the probability of any set of values of
� is determined by the equation

p���y� �
p�y���p���

� p�y���p���d�
(4)

In words, Eq. 4 says that after the data have been observed, the

posterior probability density of � is the normalized product of
the likelihood function and the prior. The prior density of � is
often taken to be slowly varying across relevant parameter
values, indicating that little is to be assumed a priori about the
potential value of the parameter. For example, in estimating a
Poisson mean firing rate, the prior probability density might be
taken to be slowly varying across all conceivably realistic
values of the firing rate. In such cases the posterior is deter-
mined almost entirely by the likelihood function and Bayes
estimates become very close to MLEs. For this reason, Bayes
estimates share with MLEs the 3 desirable properties listed
above. Furthermore, when there is good a priori information, as
in many decoding problems where one may assume the stim-
ulus to be varying smoothly over time (see section on Bayesian
decoding methods), Bayesian methods can incorporate this
information to produce better procedures. In addition, Bayesian
methods sometimes offer computational advantages because
Monte Carlo simulation methods can be used to implement
them.

It is easy to obtain standard errors for maximum likelihood
and Bayesian estimation

Earlier we noted that Fisher information is reciprocal of the
minimal possible variance of any “good” estimator, and that
ML and Bayesian estimators achieve this bound. It follows that
Fisher information may be used to obtain SEs for ML and
Bayesian estimators. In practice, it is convenient to substitute
the observed information instead. In the Poisson case we
replace � with �̂ � y� in Eq. 2 to obtain

SE��̂� � �y�/n (5)

If the Poisson assumption is correct, an approximate 95%
confidence interval can be obtained by inserting Eq. 5 into the
general formula

�̂ � 2SE��̂� (6)

Note that the SE formula in Eq. 5 is not the same as the usual
formula for the SE of the sample mean

SE�y�� � �s2/n (7)

Equation 7 does not require the Poisson assumption, but it
applies only to the sample mean, whereas Eq. 5 is an instance
of a widely applicable formula for the SE of a ML or Bayesian
estimator.3 This greatly enhances their practical utility. A
method that may be used with virtually any estimator, and does
not require a specific distributional assumption, is discussed in
NONPARAMETRIC METHODS.

Likelihood ratio tests have good statistical power

To illustrate statistical considerations concerning estimation
procedures, earlier we discussed estimation of the Poisson
mean � based on n repeated trials. Now suppose, under the
same circumstances, we wish to test the null hypothesis H0 :
� � �0. For example, �0 could be the baseline firing rate of a
neuron and we may wish to demonstrate that some stimulus
increases (or decreases) this rate, so that the alternative hy-

3 In making this statement we are blurring the distinction between SEs in the
“frequentist” and Bayesian senses (see Wasserman 2004).
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pothesis HA : � 	 �0 would hold. In analyzing this situation
we will follow a standard statistical convention, which we have
ignored up to this point: capital and lowercase versions of a
letter are used to distinguish a random variable (Y� ) from a
particular value (y�) taken by the random variable.

The obvious procedure to assess whether H0 holds would be
to examine y� and if it is sufficiently far from �0, reject H0. That
is, we would define a quantity c and reject H0 whenever �y� �
�0� 
 c. To determine c we usually require the probability of
falsely rejecting H0 to be small: under H0 (that is, assuming H0

were true), we would obtain c such that Prob (reject H0�H0

true) � Prob (�Y� � �0� 
 c) � �, for a suitably small �,
assuming each trial’s spike count Y has a Poisson distribution
with � � �0. The usual criterion is to take � � 0.05. This is
called the size of the hypothesis test, or the probability of a type
I error. When using data to assess H0 a good practice is to
report the P-value, which is the smallest value of � according
to which the observed data would reject H0. For example, one
might report P � 0.02 rather than simply P � 0.05.

To compute Prob (�Y� � �0� 
 c) one could rely on the
approximate normality of the sample mean, which is likely to
be adequately accurate unless �0 and n are both small. Spe-
cifically, under H0, because each Y has mean �0 and variance
�0, it follows that Y� has mean �0 and variance �0/n; therefore
the calculation of Prob (�Y� � �0� 
 c) may be based on
a normal distribution with mean 0 and variance �0/n, so that

c � 2��0/n when � � 0.05.
Alternatively, if there are doubts about the adequacy of this

approximation, Prob (�Y� � �0� 
 c) may be obtained (even for
small n and �0) by computer simulation. We simulate samples
U1, U2, …, Un, where each U1 has a Poisson distribution with
mean �0 and for each sample compute the sample mean Ū. If
we repeat this procedure a large number of times to obtain a
large number of samples (say, 10,000) we can then approxi-
mate Prob (�Y� � �0� 
 c) accurately by the proportion of
samples for which �Ū � u0� 
 c. This is an example of a
parametric Bootstrap test. We discuss the nonparametric Boot-
strap in the next section. Simulation-based calculation of P-
values is an important technique because it applies to situations
where normal approximations (or other, similar approxima-
tions) are either unavailable or of dubious validity.

In complicated settings there may not be an obvious statis-
tical test, or there may be several (as in the hypothetical
example of alternative estimators for the Poisson mean � used
above), or one may want some reassurance that, as with ML
estimation, the method is a good one. The general approach
based on the likelihood function is to define the ratio of the
likelihood under H0 to that under HA and to reject H0 whenever
this ratio is sufficiently small. This procedure is called the
likelihood ratio test. Thus, to test H0 : � � �0 versus HA : � �
�1 we would use LR � L(�0)/L(�1) and reject H0 when LR
� c, where c is chosen so that Prob (LR � c) � � when H0 is
true. Here, �1 would be some prespecified alternative value of
the Poisson mean. Usually, however, no such specific alterna-
tive to �0 is apparent and the more generic alternative � 	 �0
is used. In this case the likelihood ratio L(�0)/L(�̂) is used,
where �̂ is the MLE. For the Poisson case H0 : � � �0, it turns
out that the likelihood ratio test yields the “obvious” procedure
based on y� discussed above. The likelihood ratio test produces,

similarly, many familiar statistical tests (such as t-tests and
F-tests).

When 2 distinct procedures are available for testing the same
null hypothesis they may be compared by first aligning them to
have the same size (i.e., the same value of �) and then
computing their power, which is the probability of correctly
rejecting H0 for particular values of the parameter that satisfy
HA. Extensive theory and simulation studies have shown that
the likelihood ratio test tends to have good power, often nearly
or exactly the best possible power, in a wide variety of
situations, at least when sample sizes are reasonably large (e.g.,
van der Vaart 1998). It is therefore the most commonly applied
statistical testing procedure when there are explicit parametric
probability models under both hypotheses. Bayesian methods
of hypothesis testing are beyond the scope of our review here,
but they have received considerable attention in recent years
and the interested reader should consult Kass and Raftery
(1995); an application to neuronal data analysis is in Behseta
and Kass (2005).

Applicability of a probability model to a data set should
be assessed

Previous subsections have been concerned with fundamental
principles of statistical inference. In our introductory discus-
sion, however, we emphasized the inductive process dia-
grammed in Fig. 1 and, according to that figure, statistical
inferences should occur only after determination that the prob-
ability model on which the inferences will be based is ade-
quate. A variety of procedures have been developed to assess
the adequacy of a probability model in representing the regu-
larity and variability in a particular set of data. One method is
to consider a more elaborate model and conduct a likelihood
ratio test to choose between the simpler model and the more
elaborate model. A second approach is to compare suitable
features of the data to predictions made by the model, and a
general procedure for doing so is to examine a set of functions
of the data that would, if the probability model were correct,
constitute a sample from a particular probability distribution,
say F(y); when the function values are ordered and plotted
against theoretical quantiles of the putative probability distri-
bution F(y), the result, called a Q–Q (for quantile–quantile)
plot, should be roughly linear (e.g., Hogg and Tanis 2001).
Both of these methods are discussed later in POISSON AND

NON-POISSON MODELS. In addition, chi-squared goodness-of-fit
statistics may be used to evaluate fit when applicable (e.g.,
Sokal and Rohlf 1995).

N O N P A R A M E T R I C M E T H O D S

In the previous section we discussed parametric statistical
methods, first considering estimation and then describing hy-
pothesis testing based on the likelihood ratio test. In the
following subsection we review very briefly the purpose of
nonparametric methods, and a bit of the terminology, so that
readers will be equipped to tackle the literature. We next
describe a very general approach to assessing uncertainty,
called the Bootstrap, illustrating it by revisiting the simple
hypothesis testing problem posed earlier.
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Modern nonparametric methods allow greater flexibility in
probability models at the cost of some loss of efficiency

The Poisson distribution uses a single parameter �. Other
distributions or models, such as linear regression models,
typically depend on a small number of parameters that must be
estimated from (or “fitted to”) the data at hand. It is important
to consider carefully what might happen if the probability
model were to be incorrect in some plausible way. For exam-
ple, as we already mentioned, in the case of estimating �, the
sample mean y� remains consistent (and the MSE becomes
arbitrarily small with sufficiently much data) for non-Poisson
data, whereas s2 will estimate the population variance, which
may differ from the population mean. Often a restrictive
model, such as the Poisson, is replaced with a more flexible
model. Highly flexible models are often called “nonparamet-
ric.”

Classical nonparametric methods substitute transformed ver-
sions of the data (such as ranks), to obtain analogues of
standard elementary methods (such as ANOVA). Modern non-
parametric methods use models with large numbers of param-
eters, and their theoretical analysis often assumes there are
infinitely many parameters. In some contexts, the parameters
are used to characterize a probability distribution, as in the
Bootstrap, which we discuss next. Sometimes, large numbers
of parameters are used to replace linear relationships with
nonlinear relationships whose form is not picked a priori but
rather is determined from the data. For example, curve fitting
is often accomplished with very flexible models (having large
numbers of adjustable parameters), a process statisticians usu-
ally call nonparametric regression. We discuss the application
of generalized nonparametric regression to neuronal data in the
next section, where we view the PSTH as a nonparametric
estimator of the firing rate function and contrast it with more
efficient alternatives.

Nonparametric methods apply more generally than paramet-
ric methods. This generality comes at a cost: when the assump-
tions of a parametric model hold (or hold to a close approxi-
mation), they will be more efficient than nonparametric com-
petitors. In deciding whether to apply a parametric or a
nonparametric method, therefore, one must consider the like-
lihood of a substantial departure from the parametric assump-
tions. The notion of “substantial departure” will depend on the
context, and some parametric methods are more likely than
others to perform poorly. Numerical simulations may be used
to determine performance of nonparametric methods in various
situations (compared, say, to ML, which would be fully effi-
cient). Some modern nonparametric methods can perform very
well, with relatively little loss of efficiency (e.g., van der Vaart
1998). An example concerning the fitting of directional tuning
curves is discussed in the next section.

The Bootstrap is a general nonparametric method of
assessing uncertainty

Earlier we pointed to the use of simulation in computing
P-values. There we were discussing the parametric case in
which, under H0, the probability distribution of each observa-
tion Yi was Poisson with parameter � � �0. However, because
neuronal spike counts are known to exhibit non-Poisson be-
havior, it may be desirable to use a procedure that does not

assume Poisson counts. For this purpose, the translated ob-
served spike counts Y1 � (Y� � �0), Y2 � (Y� � �0), …, Yn �
(Y� � �0), with Yi being the count for the ith trial, may be
repeatedly resampled. That is, we draw observations U1, U2,
…, Un where each Ui takes on the value of one of the observed
values of Yi � (Y� � �0), and all such values occur with
probability 1/n. This is known as sampling with replacement.
The reason for the translation is explained below. Having
thereby obtained a large number of samples we then (as with
the Poisson Ui values in the previous section) compute the
proportion of samples for which �Ū � �0� 
 c, which, again,
estimates the desired Prob (�Y� � �0� 
 c). This method is
known as the Bootstrap. It is nonparametric because it does not
require the assumption of a specific parametric family of
distributions (here, Poisson). Instead, it requires the data values
Yi to be independent replications from the same probability
distribution. It works because it implicitly uses the data Y1, Y2,
…, Yn to estimate the probability distribution from which they
are assumed to be drawn, and then computes the desired
probability from this estimate. With a large simulation, the
Poisson-based parametric boot strap method can compute Prob
(�Y� � �0� 
 c) with arbitrarily good accuracy. The nonpara-
metric Bootstrap P-value, however, is accurate only for large
sample sizes n. The great value of the Bootstrap is that it may
be applied in many complicated situations. We describe its use
in testing for correlated activity between 2 neurons in CORRE-
LATED PAIRS OF NEURONS. Furthermore, a substantial literature
has demonstrated both theoretically and in numerical studies
that it is widely effective (Davison and Hinkley 1997; Efron
and Tibshirani 1993). In addition to treating the testing prob-
lem, the Bootstrap may be used to obtain SEs and confidence
intervals.

The simplicity of the Bootstrap conceals an important point:
its properties depend on the precise manner in which the
resampling is conducted; arbitrary shuffles of the data do not
necessarily accomplish desired statistical goals. In hypothesis
testing, the P-value must be obtained under the hypothetical
reality imposed by H0. For example, in the problem discussed
above, we wished to compute the hypothetical probability Prob
(�Y� � �0� 
 c) under the supposition that the observations had
mean � � �0. We cannot merely sample the Yi values because
their mean � may not equal �0. (Indeed, this is precisely the
possibility we are examining when we perform the statistical
hypothesis test.) Instead, the calculation may be based on new
data that resemble the Yi values except that their mean is
shifted to equal �0. To produce a version of Yi that has mean
�0 rather than � we would, in principle, want to subtract from
Yi the quantity � � �0. Because we do not know the value of �
we instead subtract (Y� � �0). Thus, in the procedure out-
lined above, the observed values of Yi � (Y� � �0) were sampled.

S T A T I S T I C A L S U M M A R I E S O F F I R I N G R A T E

The PSTH communicates firing rate and its evolution
across time

Within an experiment, each trial’s set of recordings from a
single neuron produces a different spike train. By recording
many repeated trials the regularity in the neuron’s response to
a stimulus, or the production of some behavior, may be
obtained. A raster plot displays the complete set of spike times
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for all trials for a single neuron in a particular experimental
condition, whereas the peristimulus time histogram (PSTH)
accumulates these to show both the overall activity of the
neuron and the way its firing rate varies across time (Gerstein
and Kiang 1960).

One reason the PSTH works well as a visual summary of the
data is that our eye is able to pick up trends, smoothing the
PSTH so that we see the temporal evolution of the firing rate.
In Fig. 3 we have overlayed a smooth curve on a PSTH, based
on data recorded from a locust antennal lobe neuron. The
PSTH jumps somewhat erratically from bin to bin because of
noise and does not track the kind of continously varying firing
rate one would expect. For this reason, the curve is closer to
what we understand from looking at the PSTH than is the
PSTH itself.

We will later discuss the method we used to generate the
fitted curve in Fig. 3. We should emphasize our use of the
modifier “fitted.” A fundamental conceptualization in statisti-
cal theory distinguishes the unknown “true” firing rate curve
(which would result from the hypothetical possibility of run-
ning infinitely many trials) from an estimate of it obtained from
actual data, in the sense described in Information and statisti-
cal efficiency. Furthermore, when we speak of estimating the
firing rate we mean that we will use the data to produce an
estimate of the instantaneous firing rate at each time t, where
t varies across the whole range of experimentally interesting
values. We write the instantaneous firing rate as �(t) and are
interested in estimating the entire curve described by �(t) for t
in some interval, which we write as [A, B]. In statistics, one
usually writes an estimate obtained from data with a hat, so an
estimate of the firing-rate function would be written �̂(t).

Conceptually, �(t) is the trial-averaged firing-rate function,
as opposed to the within-trial firing-rate function. As we note
later, the latter may include effects resulting from “membrane
memory” (the refractory period) or erratic bursting (bursting
that is not time-locked to experimental stimulus or behavior),
so that at time t it may depend on the precise timing of spikes
that occur before time t. The function �(t) represents the
tendency to fire at time t that a neuron would have if such
memory or erratic bursting effects were removed, as they
would be by averaging (hypothetically) over infinitely many
trials. It is often, implicitly, considered to be a representation of
the firing of large numbers of independently acting neurons
similar to the one being recorded (each trial effectively repre-
senting the activity of one such similar neuron). Our focus, in
the remainder of this section, on estimation of �(t) is not meant
to imply that every analysis should begin with a time-domain

representation of firing rate. In many situations, especially
when oscillatory stimuli are used, frequency-domain analyses
can produce valuable interpretations of the data (Brillinger
1992; Mechler et al. 1998; Pesaran et al. 2002).

Some neuroscience questions involve instantaneous firing rate

Sometimes, questions of scientific interest are posed natu-
rally in terms of instantaneous firing rate. For example, Olson
et al. (2000) examined neurons in the supplementary eye field
(SEF) when a monkey moved his eyes in response to either an
explicit external cue (the point to which the eyes were to move
was illuminated) or an internally generated translation of a
complex cue (a particular pattern at a fixation point determined
the location to which the monkey was to move his eyes). In one
part of their study, they were interested in the time at which
maximal firing rate was achieved, and the delay of this maxi-
mum for the internally generated cue compared to the external
cue. Formally, the problem is to determine the value of t that
maximizes �(t). Similarly, when the maximal firing rate, or the
difference between the maximal rate and a baseline rate, is of
interest the problem involves estimation of �(t).

Probability models in terms of instantaneous firing rate
make efficient use of the data

A second reason for estimating the instantaneous firing rate
�(t) is that it appears in probability models and, as we have
already noted, when coupled with maximum likelihood or
Bayesian methods of estimation, probability models reduce the
data efficiently. For example, if we assume a set of n spike
times s1, …, sn follow a time-varying Poisson process then
their probability density is

p�s1, �, sn� � e��A
B ��t�dt �

k�1

n
��sk� (8)

We discuss Poisson processes in POISSON AND NON-POISSON

MODELS. Here, our point is that to apply the formula in Eq. 8,
which is used in many theoretical and data-analytic calcula-
tions, we must be able to obtain values of �(t) for various
values of t. For this purpose the function �(t) would have to be
estimated from the data.

As an estimate of firing rate the PSTH can be improved
by smoothing

It would be possible to use the PSTH as an estimate of �(t).
However, the PSTH is relatively noisy and, under the assump-

FIG. 3. Estimates of �(t) based on smoothed versions of the peristimulus time histogram (PSTH), for data from a locust antennal lobe neuron in response to
a stimulating odor. Left: raster plot of the 15 trials. Center: PSTH with 2 Gaussian filter fits, one having small bandwidth and one having larger bandwidth, the
former of which undersmooths where the firing rate varies slowly, whereas the latter oversmooths where the firing rate varies rapidly. Right: PSTH and Bayesian
adaptive regression splines (BARS) fit.
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tion that �(t) is itself smooth, it is possible to produce much
better estimates �̂(t) by smoothing (“filtering”). Kass et al.
(2003) provided an illustration in which smoothing increased
the efficiency of estimating �(t), compared to the PSTH, by a
factor of 14. This situation is analogous to the estimation of the
Poisson mean � we considered earlier. Using the PSTH to
estimate �(t) is like using s2 to estimate �: it would take about
140 trials to get the same accuracy with the PSTH that may be
achieved by only 10 trials with a smoothed version of the
PSTH. Not all cases are as dramatic as a 14-fold improvement,
but in our experience smoothing is likely to provide gains of at
least severalfold.

There are many ways to produce a smooth firing-rate
function; spline-based methods work very well

One simple way to reduce the noisiness of the PSTH is to
use a moving average: one may pick a suitable time window 	
(such as 30 ms) and at each time t, average the values of the
PSTH between t � 	 and t � 	. A variant of this, often called
a Gaussian filter (or, in the statistics literature, a Gaussian
kernel density estimator), uses a weighted average, putting
weights (defined by a Gaussian probability density) on each
PSTH value that decrease as the values to be averaged get
further away from time t.

When �(t) varies slowly, Gaussian filters do a good job of
estimating it. When the firing rate varies quickly, however,
Gaussian filters are unable to capture the variation without
introducing artificial high-frequency fluctuations. An illustra-
tion is given in Fig. 3, which uses data from an experiment on
olfactory coding in the locust antennal lobe (Stopfer et al.
2003). Gaussian filters can capture a rapid jump in firing rate
only by allowing noise in time periods where the firing rate is
varying slowly. When the bandwidth is increased so that the
noise is filtered out, the rapid jump in firing rate is underesti-
mated. In other words, to filter high-frequency noise, the
Gaussian filter must remove the high-frequency signal. The
problem here cannot be solved by a fixed-bandwidth filter. A
better estimate of �(t), produced by a method called BARS, is
given in the third panel of Fig. 3. It has the desirable charac-
teristic of strongly smoothing the firing rate function, while
allowing sudden increases or decreases—BARS effectively
filters high-frequency noise while retaining high-frequency
signal. BARS stands for Bayesian adaptive regression splines
(DiMatteo et al. 2001). A spline is a collection of polynomial
curves that are joined at selected points (here, time points)
called “knots.” BARS uses a Bayesian Monte Carlo method to
allocate knots optimally, to adapt to sharp variations in the
intensity function. An application of BARS to an analysis of
many single-unit firing rate functions is provided by Behseta et
al. (2005).

An alternative approach to estimating �(t) is to define a
plausible parametric form for it, with a small number of
parameters, and then estimate these parameters (by ML). For
example, Olson et al. (2000) used 6 parameters to characterize
firing rate intensity functions in 84 single units from the
supplementary eye field. However, nonparametric approaches
using BARS or related methods (cf. Hansen and Kooperberg
2002; Loader 1999) are often easier to implement, remain
accurate when the parametric form is incorrect, and suffer
relatively little loss of efficiency even when the parametric

form holds. For example, in a closely related context, Kaufman
et al. (2005) considered the problem of fitting tuning curves to
spike count data collected during wrist movement in 8 2-di-
mensional directions, with the goal of relaxing the usual
assumption of cosine tuning. Kaufman et al. modified BARS to
make it applicable to functions defined on a circle, and they
showed in simulation studies that this nonparametric method
was almost as efficient as cosine tuning when the true tuning
function was exactly of cosine form, while having the advan-
tage of being able to fit departures from cosine tuning. It is also
possible to use partially parametric fitting methods. Barbieri et
al. (2001) showed how Zernike polynomials may be used to
characterize hippocampal place fields. These involve both
Gaussian and non-Gaussian components, and are able to cap-
ture departures from Gaussian place field tuning.

An important subtlety is that all smoothing methods require
a choice of degree of smoothness. For example, a histogram
requires a choice of bin width and a Gaussian filter requires a
choice of bandwidth. These can be determined by statistical
methods, but they are often selected based on visual appear-
ance of results, possibly with some past experience in mind. To
make a sensible choice, the data analyst must consider limits
on the rate at which �(t) can change, based on physiology and
properties of the stimulus or behavior. For example, one might
ask whether the firing rate is likely to jump substantially within
10 ms, throughout the time interval during which the recording
is made. If so (if, for instance, the stimulus is itself rapidly
fluctuating), then a less smooth estimate of �(t) is desirable
than if slow variations of �(t) are to be expected. More recently
developed methods, including BARS, are able to use the data
to determine smoothness across the time domain, but they
always involve assumptions about how rapid the fluctuation of
�(t) might be.

P O P U L A T I O N C O D I N G A N D D E C O D I N G

Population coding refers to the information contained in the
combined activity of multiple neurons. The general challenge
of decoding, meaning to extract this information, reverses the
process: it is to determine from a set of spike trains (obtained
from multiple neurons) the experimental condition or stimulus
that produced them. In the simplest case, some small set of
conditions is used, and the problem is to infer which condition
led to the observed response. Decoding problems arise in
several contexts. Examples include position representation by
ensembles of rat hippocampal neurons (Brown et al. 1998;
Zhang et al. 1998), velocity encoding by fly H1 neurons
(Bialek et al. 1991), velocity and position encoding by M1
neurons (Georgopoulos et al. 1986; Moran and Schwartz 1999;
Serruya et al. 2002), and natural scene representations by cat
lateral geniculate nucleus neurons (Stanley et al. 1999). Aside
from their use to study how populations of neurons represent
information, decoding algorithms are being studied for their
use in the brain-controlled neural prosthetic devices (Schwartz
et al. 2004; Serruya et al. 2002, Wessberg et al. 2000).

Statistical analysis proceeds in 2 stages. First, the neural
firing that results from the relevant stimulus or behavioral
condition must be estimated from some history of data. Sec-
ond, this relationship must somehow be “inverted” to provide
a prediction of stimulus or behavior based on neuronal activity.
These 2 stages may be intertwined, but are conceptually and,
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usually, analytically separable. The first is sometimes called
“learning,” “estimation,” or “encoding.” The second is often
called “prediction” or “decoding.” In many situations the
encoding step takes place in a steady-state environment. This is
the most common framework for “supervised learning.” With
brain-controlled (“closed loop”) movement, however, the evo-
lution of the system’s state is important because the subject
will continue to adapt over time (Taylor et al. 2002; Wessberg
et al. 2000) and part of the goal is to enable the subject to learn.

After reviewing some simple, linear decoding methods we
discuss Bayesian decoding. The Bayesian decoding framework
is based on “state-space” modeling, where data (spike counts)
are assumed to depend on an underlying internal state (such as
planned velocity of hand movement), which in turn is assumed
to vary according to some specified dynamic model. We find
the framework appealing because it facilitates incorporation of
useful particulars, such as spike count distributions and move-
ment smoothness constraints. In addition it is widely applicable
because it can accommodate internal states that are multidi-
mensional and relationships of data to state that are highly
nonlinear.

The stimulus may be reverse-predicted from spiking activity
using linear regression

Reverse regression (also called reverse correlation) is a very
simple and widely used decoding method (e.g., Stanley et al.
1999; Warland et al. 1997). The “reverse” part of the termi-
nology comes from the reversal of roles played by the stimulus
and spike-activity response: the spike count data are treated as
if they were the inputs, i.e., the fixed explanatory variables (the
x values in the usual regression notation), whereas the stimulus
is considered the output, i.e., the response variable (the Y
variable, which in the regression formulation is assumed to be
subject to random error).

Let us first describe the procedure as it might be applied to
data from a single neuron. The explanatory variables are
defined by forming a series of successive bins of spike counts
at some suitable resolution, such as 30 ms. Thus, (x1, x2, …, xT)
would represent the vector of spike counts in T successive bins
after the stimulus. Given a training set of many stimulus and
firing-rate combinations one computes the usual least-squares
coefficients


̂ � �XTX��1XTY (9)

where Y is the vector of observed stimulus values and the ith
row of the matrix X is the spike count vector corresponding to
the ith stimulus value. The predictor of a new, unobserved
stimulus y* given a spike count vector x* is then

ŷ � x*
̂ (10)

In the case of N neurons all NT spike counts are used as
explanatory variables and then Eqs. 9 and 10 are applied. In
some applications nonparametric regression methods are used
in place of linear regression (Warland et al. 1997).

The population vector algorithm is simple and often effective

One widely successful decoding method is the population
vector algorithm (PVA; Georgopoulos et al. 1982, 1986) and
its modifications (Taylor et al. 2002). The PVA has enabled

investigation of cortical control of arm movement (e.g., Moran
and Schwartz 1999) including phenomena such as illusion
perception (Schwartz et al. 2004) and has also been used in
quite different contexts, such as the representation of moving
tactile stimuli in sensory cortex (Ruiz et al. 1995). The method
originated from the observation that motor cortex neurons
are directionally tuned, with broad tuning curves that may
be characterized reasonably well by 2 parameters, average
firing rate and preferred direction. The preferred direction D� is
the direction in which the neuron’s firing rate is highest. The
preferred directions are obtained by fitting tuning curves to
observed training data. Once one knows a neuron’s preferred
direction and its average firing rate, its firing rate for an
arbitrarily specified direction may be determined, subject to
some error. The PVA reverses the process, predicting direction
from firing rate, by combining the observed activity from a
large number of neurons. Specifically, the movement velocity
v� at a suitable time lag � after spiking activity is predicted by
the “population vector” P� according to the equation

P� �t � �� � �wi�t�D� i (11)

where D� i is the ith neuron’s preferred direction and the
“weight” wi(t) is the neuron’s firing rate at time t (after being
normalized in some fashion). The intuitive interpretation of the
population vector is that it represents the population when each
neuron sends in its “vote” for its preferred direction, which is
then weighted by its activity.

The population vector algorithm is a special case of
linear regression

We may connect the PVA to least-squares regression by
thinking of the preferred direction D� i as an explanatory vari-
able, which, for a given velocity v�, predicts spiking activity wi
according to the linear regression model

wi � bi0 � D� i � v� � �i

where the coefficients bi0 are intercepts representing baseline
firing rate and �Di � v� is the dot product. If we now collect the
firing rates together into a vector Y � (w1, …, wn) and the
preferred directions (along with the intercepts) into a corre-
sponding matrix X, once we take 
 � v� we obtain the usual
matrix form of the linear regression model

Y � X
 � � (12)

as a description of the dependency of spiking activity on
preferred direction.4 Furthermore, we also have

XTY � �wi�t�D� i (13)

which is the PVA prediction in Eq. 11. Now, if we assume that
the preferred directions are uniformly distributed, then it may
be shown that the matrix XTX reduces to the identity matrix. In
this case, the least-squares fit for the velocity vector 
 � v�
given by Eq. 9 reduces to the PVA in Eq. 13. Having made this
observation, one may immediately generalize to the case in

4 The PVA may be considered a special case of linear regression, but it is not
a special case of reverse regression. In both Eq. 12 and reverse regression, the
role of stimulus is being played by velocity. In Eq. 12, however, velocity
becomes the parameter 
 rather than the response variable y, which it is in
reverse regression.
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which the preferred directions are non-uniform by replacing
the PVA estimator XTY in Eq. 13 with the least-squares
estimator (XTX)�1XTY in Eq. 9. In addition, it should be noted
that ordinary least squares assumes the responses, in this case
the firing rates of the various neurons, have equal variances and
are independent. Otherwise, classical statistical analysis shows
that weighted least squares (WLS) should be used


̂� � �XT��1X��1XT��1Y

where � is the variance matrix of Y (Kutner et al. 2004).
Salinas and Abbott (1994) refer to the WLS estimator as the
optimal linear estimator.

Bayesian decoding methods are efficient and flexible

We indicated earlier that Bayesian methods are efficient and
we also mentioned that they can effectively incorporate a priori
information. To implement Bayesian decoding for velocity, as
an alternative to the PVA outlined above, we must apply
Bayes’ theorem (analogously to Eq. 4). This requires 1) a
probability model for the data and 2) a prior probability
assumption for the unknown velocities (which are to be pre-
dicted).

A simple version of Bayesian decoding obtains the predicted
velocity vector at time t � �, which we now write as vt��, from
a pair of equations. (One simplification in this exposition is that
we are assuming the time lag � between neural firing and
movement remains fixed throughout the experiment and is the
same for all neurons.) The first equation specifies the posterior
distribution given by Bayes’ theorem (analogously to Eq. 4)

p�vt���y1, …, yt� 
 p�yt�vt���p�vt���y1, …, yt�1� (14)

In Eq. 14 the likelihood function is the probability p(yt�vt��) of
a firing rate yt when a movement vt�� will be made at time t �
�. The second probability density on the right-hand side of Eq.
14 plays the role of the prior for velocity at time t � � based
on the spiking activity that has preceded time t. This density is
determined, recursively, from the equation

p�vt���y1, …, yt�1� �� p�vt���vt�1���p�vt�1���y1, …, yt�1�dvt�1�� (15)

In Eq. 15 we obtain the integrand p(vt�1���y1, …,� yt�1) from
the previous step of Eq. 14. The factor p(vt���vt�1��) is where
the prior information (information separate from, or “prior” to,
any spiking activity) is inserted: we assume the velocity vt��

will tend to resemble vt�1��, but will deviate from it by a small
amount (governed by a smoothing parameter, which may also
be obtained from the data); as a result the velocity will be
smoothed across time. The details we are skipping may be
found in Brockwell et al. (2004) and the references therein.
Equation 15 is sometimes called the Chapman–Kolmogorov
equation (Brown et al. 1998).

Equations 14 and 15 are very general. Alternative evolving
behavioral parameters may take the place of velocity. If the
likelihood function [the probability p(yt�vt��) in Eq. 14] de-
scribes reasonably well the dependency of spiking activity on
these parameters, there are sufficient data, and the prior
smoothness condition [the probability p(vt���vt�1��) in Eq. 14]
is appropriate, then Bayesian decoding will predict their evo-
lution accurately.

Brockwell et al. (2004) compared the PVA to optimal linear
estimation (OLE) and Bayesian decoding for a computer-
simulated hand movement using 200 neurons with tuning that
was similar to directional tuning observed in motor cortex data.
In their simulation study PVA was less efficient than OLE by
a factor of 2 and less efficient than Bayesian decoding by a
factor of 10. Thus, for example, Bayesian decoding of 25
neurons would be roughly as accurate as PVA decoding of 250
neurons. Brockwell et al. (2004) also obtained roughly 7-fold
improvement in MSE for a set of motor cortical data. Large
gains in accuracy with Bayesian decoding have also been
reported by Gao et al. (2002).

To illustrate the flexibility of the approach, we provide a
second example of Bayesian decoding in the context of recon-
structing the path of a foraging rat based on the activity of
pyramidal neurons in the CA1 region of the hippocampus. It is
well known that when a rat moves through its environment
these neurons fire only in certain regions of space (O’Keefe
and Dostrovsky 1971; Wilson and McNaughton 1993) and, as
a result, they are called place cells and regions of space in
which they fire are termed place receptive fields. Brown et al.
(1998) analyzed place cell spike trains and position data from
a rat freely foraging in a circular environment. Here, we
contrast Bayesian decoding with reverse correlation, as in Eq.
9 and 10. We analyze similar data in An example of iterative
probability modeling.

To display results we show the X and Y components of the
animal’s position separately. Figure 4 displays the fit of the
reverse correlation model (green line) and the Bayesian decod-
ing algorithm (red line) to the X and Y components of position
(blue line) for the decoding stage. Reverse correlation, which
makes no assumption of smoothness in the animal’s path,
provides a very noisy prediction, and strays substantially from
the correct path during several epochs. The proportion of
variability explained by reverse correlation is R2 � 0.23.
Compared with the reverse correlation fit, Bayesian decoding
predicts the path of the animal in the separate directions very
closely. Its deviations from the model fit, which are much
smaller than those of the reverse correlation technique, occur at
the extremes of the individual position components. The pro-
portion of variability in the path data explained by Bayesian
decoding is R2 � 0.87.

P O I S S O N A N D N O N - P O I S S O N M O D E L S

At the beginning of INFORMATION AND STATISTICAL EFFICIENCY

we noted that non-Poisson variation in spike trains is to be
expected, and has been documented, under particular condi-
tions (see also Barbieri et al. 2001; Kass and Ventura 2001;
Reich et al. 1998; and the references therein). One phenome-
non leading to non-Poisson behavior is the refractory period:
immediately after a spike there is a short interval of time during
which another spike is impossible and a longer interval of time
during which the probability of a spike is reduced. For high
firing rates refractory effects become detectable and may be
important for some analyses. Another point, mentioned earlier,
is that theoretical integrate-and-fire–type models produce non-
Poisson behavior. In addition, either bursting or excess trial-
to-trial variation (arising from changes in stimuli or internal
state of the subject) may be present. These may require spe-
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cialized techniques that either complement or extend Poisson-
based statistical methods.

In the first subsection we briefly describe the Poisson pro-
cess and emphasize its usefulness in analyzing data pooled
across trials. In the next subsection we indicate ways in which
probability models may be extended so that they may be
applied to non-Poisson data to produce within-trial analyses.
Finally, we illustrate assessment of fit for Poisson and non-
Poisson models. These methods are then used to demonstrate
the presence of non-Poisson bursting in a hippocampal place
cell in the next section on iterative probability modeling.

Time-varying Poisson processes are suitable for analyzing
data pooled across many trials

The simplest conception of neuronal firing is that it follows
a Poisson process with a time-invariant firing rate �. In this
case, the spike-generating process is said to be stationary and
Eq. 8 specializes to

p�s1, …, sn� � e��T�n (16)

where T � B � A is the total observation time. The process is
also called homogeneous (as opposed to time-varying or inho-
mogeneous). The simplicity of the homogeneous case is that
the function �(t) is replaced by a single number �. When Eq.
16 holds, the probability that a spike will occur in the infini-
tesimal interval (t, t � dt) is � � dt, regardless of the time t (i.e.,
there is a constant firing rate over time). Because spike trains
are very rarely stationary, Eq. 8 which allows for a time-
varying firing rate, is an important generalization.

Equation 8 still involves a strong simplifying assumption:
the probability of a spike at time t [i.e., in the infinitesimal
interval (t, t � dt)] is given by

Prob �spike in �t, t � dt�� � ��t�dt (17)

that is, the firing rate depends only on time. For both homo-

geneous and time-varying Poisson processes the probability of
a spike at time t is independent of the number and timing of the
spikes that have occurred before time t. Thus, effects stemming
from a refractory period or bursting are being ignored.

One of the reasons the general Poisson model Eq. (8) is
important is that it holds, at least approximately, when data are
pooled across trials. Specifically, a general theorem (Daley and
Vere-Jones 1988, Theorem 9.2.V) shows that, as the number of
replications (trials) of a non-Poisson process increases, the
pooled observations will approximately follow a Poisson pro-
cess. It may be verified statistically that spikes times pooled
across trials are nearly Poisson (e.g., Olson et al. 2000; Ventura
et al. 2001). This is illustrated in the section on assessment of
goodness-of-fit models. Whenever the general Poisson model
holds, the count of the number of spikes found in any given
interval of time (a, b) follows a Poisson distribution, as
specified in Eq. 1.

Non-Poisson data may be analyzed using probability models

Although data pooled across trials may be safely analyzed
under the Poisson assumption, it is frequently important to
examine data without such pooling. Within trials, effects such
as the refractory period and bursting may create worrisome
departures from a Poisson process.

To generalize Eq. 17 we replace the firing-rate function �(t),
also called the intensity function, with the conditional intensity
that involves not only t but also the spiking history. Writing the
history as Ht � [s1, …, sn(t)], where the series [s1, …, sn(t)]
represents the spike times before t, we then write the condi-
tional intensity as �(t�Ht) and obtain the generalization of Eq.
17 as

Prob �spike in �t, t � dt�� � ��t�Ht�dt (18)

This conditional intensity may, in principle, depend on the

FIG. 4. Decoding of the position of a rat.
Simultaneous activity of 34 place cells was
recorded while the animal foraged for choc-
olate pellets for 23 min. Electroencephalo-
gram (EEG) data were recorded from the
same electrodes and bandpass filtered from 6
to 14 Hz to extract the theta rhythm, which is
known to be an important determinant of
place cell firing. Position of each animal was
measured at 30 Hz by a camera that tracked
the location of 2 infrared diodes mounted on
the animal’s headstage. Brown et al. (1998)
defined the encoding stage as the first 13 min
of spike train, path, and theta rhythm data
and estimated the parameters of an inhomo-
geneous Poisson process model for each
place cell, together with those in a spatial
random-walk model for the prior probabili-
ties. They defined the decoding stage as the
last 10 min of the experiment for each ani-
mal. Position estimates for the decoding
analysis were updated every 33 ms, the
frame rate of the tracking camera. In total
18,000 (30 estimates/s � 60 s/min � 10
min) decoded position estimates were com-
puted. X and Y directions are plotted sepa-
rately. Bayesian decoding provides an accu-
rate reconstruction of the path, whereas re-
verse regression is noisy and subject to
sustained, substantial error in some parts of
the experiment (e.g., around 500 s).
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entire history of spikes up to time t. For example, the proba-
bility that a neuron will have a spike 500 ms after the animal
has been presented with a cue could, in principle, depend on
precisely when and how many times the neuron fired during the
500 ms after the cue. That conception, however, is too com-
plicated to be practical: it involves more parameters than can
be estimated from limited data. One useful simplification is to
assume that the probability of a spike at time t depends on both
t and on the time delay since the previous spike. Letting s* be
the previous spike time, we write

Prob �spike in �t, t � dt�� � ��t, t � s*�dt (19)

Kass and Ventura (2001) showed how generalized regression
methods may be used to fit models of the form of Eq. 19 to
neuronal data, and how the likelihood ratio test may be used
both to examine the suitability of the Poisson model and to
examine the suitability of Eq. 19. Additional references to
models for which Eq. 19 holds are contained in Kass and
Ventura (2001) and Johnson (1996).

Instead of a sequence of spike times, spike trains may be
represented, equivalently, as a sequence of interspike intervals
(ISIs). In the case of homogeneous Poisson processes, the ISIs
are probabilistically independent and follow an exponential
distribution. When the ISIs are independent and from some
particular (possibly non-exponential) distribution, the spike
train, which is again homogeneous in time, is said to follow a
renewal process. Barbieri et al. (2001) showed how inhomo-
geneous versions of renewal processes may be constructed and
fit to neuronal data by rescaling time (see also Brown et al.
2002). Such time-rescaled probability models may be moti-
vated from biophysical considerations, such as integrate-and-
fire (IF) or other models of the neuron’s spiking mechanism.
They are similar in spirit to the models specified by Eq. 19 and
are likely to produce similar data-analytical results, but as yet
no detailed comparison of these 2 alternative statistical models
has been carried out.

Goodness-of-fit may be assessed for both Poisson
and non-Poisson models

In Information and statistical efficiency we mentioned Q–Q
plots as a general methodology for assessing goodness-of-fit.
Here we illustrate with the locust antennal lobe data considered
earlier. We consider the fit of Poisson and non-Poisson pro-
cesses. The methodology was previously discussed by Brown
et al. (2002). In the Poisson case, the idea is that it is possible
to remove the effect of �(t), suitably transforming the spike
train, and thereby obtain a homogeneous Poisson process, with
exponentially distributed ISIs. We then order these ISIs and

plot them against quantiles from an exponential distribution.
When the Poisson fits well, the plotted points will fall roughly
on a line. Furthermore, 95% probability bands may be super-
imposed so that it is possible to judge substantial departures
from linearity in the plot. Specifically, 95% of spike trains
artificially generated from an assumed probability model will
have Q–Q plots lying within the 95% probability bands. Thus,
spike trains having Q–Q plots within the 95% probability
bands would be judged to have ISI distributions that are
consistent with the hypothesized model. This is illustrated in
Fig. 5 first when the data are pooled across trials. According to
our earlier remarks, pooling across trials should make the
resulting point process agree closely with what is expected for
an inhomogeneous Poisson process. This is what we observe in
the left panel of Fig. 5.

The transformation of the spike train used in producing Fig.
5 is a rescaling of time and, as discussed by Brown et al.
(2002), the same method is applicable to other point processes.
The right side of Fig. 5 shows the within-trial Q–Q plots for
both the inhomogeneous Poisson process and the model of Eq.
19. The non-Poisson process from Eq. 19 fits these data quite
well, and much better than the Poisson.

A N E X A M P L E O F I T E R A T I V E

P R O B A B I L I T Y M O D E L I N G

To illustrate the iterative model-building process displayed
in Fig. 1 we will present results based on 3 probability models
for the activity of a single neuron recorded by Frank et al.
(2001) from the CA1 region of the hippocampus in a behaving
rat. Bayesian decoding was based on position and theta rhythm.
Associated with the theta rhythm, place cells often exhibit
bursting. A simple question is: What is the relative importance
of position compared with the theta rhythm and bursting in
describing the spiking activity of the place cell neurons? We
will display results from 3 models: the first based only on the
rat’s position, the second including theta phase, and the third
including both theta phase and bursting.

In the experiment described by Frank et al. (2001), the
spiking activity of approximately 30 CA1 hippocampal neu-
rons was recorded from a rat during 20 min of running on
U-shaped track. We begin with some exploratory analysis in
Fig. 6. As is evident from Fig. 6A, along the 150-cm U-shaped
track the spiking activity of this neuron is high only in
positions 40 to 90 cm. From Fig. 6B there is a suggestion of
increased activity between theta phases 90 to 180°. The ISI
histogram, in Fig. 6C, shows a large number of short ISIs (�20
ms), an observation that is consistent with the presence of
bursting. The second, much smaller peak in the ISI histogram

FIG. 5. Goodness-of-fit Q–Q plots, with 95% probability
bands. Left: plot of empirical quantiles vs. theoretical model
quantiles, for the locust antennal lobe neuronal data after
pooling spike times across trials [thereby destroying the orig-
inal interstimulus interval (ISI) structure of the data]. The plot
indicates very close agreement with the Poisson process pre-
dictions. Right: plots for within-trial data based on Poisson and
non-Poisson (IMI, for Inhomogeneous Markov Interval) mod-
els, the latter following Eq. 19. This plot uses all 15 trials,
without pooling. The Poisson process model clearly does not fit
these data, whereas the IMI model fits quite well. Both plots are
based on the time-rescaling method discussed by Brown et al.
(2002).
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between 100 and 150 ms is consistent with the theta rhythm
modulation.

As an initial probability model for the neuronal spiking
activity we used an inhomogeneous Poisson process with firing
rate being a function of the animal’s position in the environ-
ment—without consideration of theta rhythm. Barbieri et al.
(2004) found Zernike polynomials effective in representing
place fields in a foraging environment enclosed by a circular
boundary. To adapt their approach to the example we are
presenting here, the domain of the polynomials was restricted
to the U-shaped track. Dependency of firing rate on position
was thus represented as

log ��t� � 
0 � �
j�1

5


jzj�x�t�� (20)

where x(t) is the position of the animal at time t.
The model was fitted to the data using ML. The resulting

estimate of the spatial extent of the place field is shown in Fig.
7A. It matches well the histogram in Fig. 6B. However, the
Q–Q plot (Fig. 7C, black curve), based on the method de-
scribed earlier, clearly shows the simple spatial model to be
inaccurate: the plot ranges far outside the 95% probability
bands. To determine whether adding a theta phase component
could improve the fit, the model was reformulated by adding a
term of the form 
6 cos [�(t)] � 
7 sin [�(t)], where �(t)
represents the theta phase. The resulting Q–Q plot (Fig. 7C, red
curve) indicates no improvement in fit.

To capture the effect of both bursting and the theta rhythm
in the description of the neuron’s spiking activity a represen-
tation of spiking history, following the general form of Eq. 18,
was included. The complete specification of within-trial firing
rate was

log ��t�Ht� � 
0 � �
j�1

5


jzj�x�t�� � �
j�1

20


jnt�j (21)

where nt�j is the number of spikes in the 10 ms interval 10j ms
before time t. In this model, current spiking activity is related
not only to current position and to theta phase, but also to
spiking activity going back 200 ms before the current time
point. In particular, Eq. 21 represents the theta phase in terms
of the tendency for increased firing rate whenever the spike
counts nt�j are relatively large, with j being roughly 125 ms,
assuming the corresponding 
 coefficients are positive; the
positivity of the 
 coefficients must be verified from the fit of
the model to the data. The Q–Q plot based on the ML fit of
model Eq. 21 is also displayed in Fig. 7C (blue curve). This
model provides a far better fit than the previous 2 models, with
the Q–Q plot lying within the 95% bounds. The spatial com-
ponent of the new model was found to be essentially identical

FIG. 6. Histograms of CA1 neuron’s spiking activity. A: spike counts
plotted against position. B: spike counts plotted against theta rhythm phase. C:
ISI histogram: the large early peak and smaller and broader late peak indicate
the presence of bursting and theta rhythm, respectively.

FIG. 7. Maximum likelihood fits from models incorporating 1) position; 2)
position and theta rhythm; and 3) position, theta rhythm, and bursting. A:
position component, which remains the same for all 3 models. B: coefficients
of the temporal component in Eq. 21. First 2 coefficients correspond to times
0–10 and 11–20 ms before the current spike time and their positive values
represent the effect of bursting. Positive values of the coefficients from 100 to
110, 111 to 120, 121 to 130, 131 to 140, and 141 to 150 ms represent the effect
of the theta rhythm. C: goodness-of-fit Q–Q plots for the 3 models: the position
model Q–Q plot is in black; the position and theta rhythm model Q–Q plot is
in red; and the position, theta rhythm, and bursting model Q–Q plot is in blue;
45° line represents a perfect fit, which would not account for statistical
variation; green lines are the 95% probability bands. Q–Q plots show that the
ISIs are consistent with the 3rd model but not the 1st and 2nd models.
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to that shown in Fig. 7A. The coefficients 
j, plotted in Fig. 7B,
are positive between roughly 5 and 20 ms, consistent with
bursting, and also between 100 and 150 ms, consistent with the
theta rhythm, as mentioned above. To check whether all the 

coefficients improve the fit, the likelihood ratio test was ap-
plied sequentially, first to the model using only the coefficients

1, 
2, next to the model including coefficients 
1, …, 
9, and
finally to the model with all 20 
j coefficients. In each case the
results were highly statistically significant. Considering these
findings together with the goodness-of-fit assessment, we con-
clude that this neuron responds to position, with evident effects
of theta phase and bursting.

These results, and similar analyses based on many more
neurons, suggest that spatial and temporal structure are both
important for understanding how CA1 represents information
(Frank et al. 2004, J Neurosci). Note that, unlike the general
situation described in Statistical summaries of firing rate, there
has been no pooling across repeated trials. This is important
because the precise paths taken by the animal across experi-
mental replications may be different. Similar modeling efforts
would be useful whenever trials involve behavioral changes or
neuronal adaptation. We return to such trial-to-trial variation in
the next section.

C O R R E L A T E D P A I R S O F N E U R O N S

Discussions of correlation may refer to any of several
distinct phenomena. Neurons may be similar physiologically in
the sense that they may respond to the same set of stimuli with
the same temporal firing-rate profile, yet they may be statisti-
cally independent in the sense that the spiking activity of one
neuron may be described adequately by its conditional inten-
sity function, whereas the activity of the other neuron provides
no additional predictive information (i.e., no additional ability
to predict when the spikes of the first neuron will occur). In
particular, 2 neurons may tend to fire in close temporal prox-
imity to each other even if the neurons are statistically inde-
pendent: if they both respond to a stimulus with nearly the
same time-dependent firing-rate function, and if that function
moves suddenly from a low rate to a much higher rate, both
neurons will spike frequently at roughly the same experimen-
tally defined response time. As a matter of definition, then,
when we speak of correlation, we will be referring to an
additional tendency of 2 neurons to fire together after their
firing-rate functions (their conditional intensities) have been
accounted for.

A second point is that the “tendency to fire together” may
refer either to the tendency of the neurons to fire in close
temporal proximity or to the tendency for one neuron to have
larger or smaller spike counts on trials for which the other
neuron has correspondingly larger or smaller spike counts. The
former implies the latter: if 2 neurons tend to fire in close
temporal proximity (beyond what is predicted by their individ-
ual firing-rate functions), they will also tend to have larger or
smaller spike counts together, across trials. On the other hand,
the latter tendency for 2 neurons to vary together across trials
may occur over and above what is caused by proximal firing
within trials and may occur in the absence of any correlation
within trials. The variation in a neuron’s spiking activity across
trials beyond that predicted by the neuron’s firing-rate function

is called “trial-to-trial variation.” Shared trial-to-trial variation
can be an important source of correlation in spike counts.

The tendency of two neurons to act together may be
displayed by the normalized JPSTH and cross-correlogram

Because the firing of each neuron is highly variable, care
may be required in judging the importance of any apparent
tendency for 2 neurons to fire together. Of course, 2 neurons
could fire together as a result of chance fluctuations, and the
general statistical problem is to compare observed tendencies
to those that would be predicted by chance alone, under the
assumption that the neurons are actually operating indepen-
dently. If it could be assumed, in addition, that each neuron had
a time-invariant firing rate the problem would not be very
difficult. However, rigorous assessment of association in the
presence of neuronal firing rates that vary across time is
somewhat involved, particularly when the association may
itself vary across time.

A very useful graphical display for this purpose is the joint
poststimulus time histogram (JPSTH; Aertsen et al. 1989). This
extends the PSTH by counting the number of trials on which
spikes occur for both neuron 1 at time u and neuron 2 at time
v, with the aim of indicating the times (and relative time lags
v � u) at which large numbers of joint spikes occur. To judge
what numbers are “large,” the raw JPSTH values may be
standardized in units that reflect the variation that would be
expected if the 2 neurons were operating independently. This is
what is done in the “normalized JPSTH.” To judge the ten-
dency of 2 neurons to fire together at a time lag of 	 � v � u
ms the values along the diagonals (defined by v � u � 	) of the
normalized JPSTH are summed, producing the cross-correlo-
gram, which is a function of 	.

The cross-correlogram provides an indication of correlated
firing at various lags 	. Assuming it is based on the normalized
JPSTH (in the literature, definitions vary), the cross-correlo-
gram adjusts for the time-varying firing rate. This is important:
if the 2 neurons both had little activity over most of the range
of time being examined but very substantial firing rates over
some small subinterval of time, a sizeable fraction of spikes
would occur in fairly close proximity to one another. By some
measures of association the 2 neurons would therefore appear
to be acting together even when, in fact, they were operating
independently. Thus, the ability of the normalized JPSTH and
cross-correlogram to adjust for firing rate is essential. There
remain several statistical concerns, however.

A more powerful assessment of time-varying correlated
spiking activity may be obtained by smoothing the JPSTH
and applying Bootstrap significance tests

First, it is important to note that there is no uniquely
compelling method of normalizing the JPSTH: the normaliza-
tion of Aertsen et al. (1989) produces at each set of coordinates
(u, v) the usual correlation (Pearson correlation), across trials,
of the spiking activity for neuron 1 at time u with the spiking
activity for neuron 2 at time v. Because this is a widely used
measure of association it is appealing, but there are many other
equally good measures and they can yield different results (Ito
and Tsuji 2000). Second, there are alternative methods of
defining statistical significance tests. These may use 1) alter-
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native association measures and test procedures, 2) smoothing
of measures across neighboring time values, and 3) alternative
methods of computing p-values. Ventura et al. (2005a) defined
a statistical test based on the smoothed ratio �	(t) of the joint
spiking activity (the diagonal of the JPSTH at time lag 	) to
that expected under independence: the test uses the Bootstrap
to define a threshold c and compute a P-value for the magni-
tude of the peak of the function �	(t) 
 c. The resulting
procedure can be more accurate and sensitive than tests based
solely on the normalized JPSTH.

It is important to distinguish trial-to-trial variation from
correlated spiking activity within trials

A third consideration is that the normalized JPSTH, and
cross-correlogram, assume that all trials are statistically iden-
tical, in the sense that the variation across trials arises solely
from the variation within trials. In other words, they assume
that the additional trial-to-trial variation is zero. Nonnegligible
variation between trials could arise from experimental effects,
such as nonidentical stimuli, or changes in the internal state of
the subject. The importance of distinguishing trial-to-trial vari-
ation from within-trial variation has been emphasized by Brody
(1999a,b), Ben-Shaul et al. (2001), and Ventura et al. (2005b),
among others. To consider trial-to-trial variability formally let
us write the conditional intensity for trial r as �r(t�Ht). The
statistical problem of estimating �r(t�Ht) is difficult because
each trial contributes only a modest amount of information, in
the form of a handful of spike times. Progress requires fairly
strong assumptions about the form of �r(t�Ht). The approach
used by Ventura et al. (2005b) was to write

�r�t�Ht� � gr�t���t�Ht� (22)

and to represent the trial-dependent gain factor gr(t) in terms of
a small number of freely varying parameters. In this way, the
relatively small amount of information available from a small
number of spikes could be used efficiently. Ventura et al.
(2005b) then showed how the smoothing and Bootstrap meth-
ods of Ventura et al. (2005a), for analyzing correlated activity
of neurons, could be extended to accommodate trial-to-trial
variation and, furthermore, how graphical displays such as the
cross-correlogram could then be corrected for trial-to-trial
variation.

Brody (1999a,b) distinguished latency effects, which refer to
the tendency for a neuron to respond with differing delays on
different trials, from excitability effects, which refer to changes
in the magnitude of the firing rate across trials. Although these
may in some cases be difficult to disambiguate, it is useful to
consider them separately. Ventura (2004) proposed a simple
testing and estimation procedure for trial-dependent shift ef-
fects as a way of accommodating latency. (See also Baker and
Gerstein 2001.)

Decoding may be either adversely affected or improved
by correlation

An important observation about the potential deleterious
effects of correlation was made by Zohary et al. (1994; see also
Shadlen and Newsome 1998). They examined spike counts in
large time intervals across trials among pairs of neurons re-
corded simultaneously from MT in response to moving-dot

stimuli and observed small but nonnegligible correlations,
averaging around r � 0.12. Zohary et al. (1994) went on to
point out that when a sample mean is computed from obser-
vations having similar correlations its SE no longer declines as
1/�n but rather reaches an asymptote. As a consequence, the
sample mean based on many thousands of correlated observa-
tions would provide the same information as that based on only
a few independent observations. Thus, a downstream neuron
that integrates correlated spike counts by summing (equiva-
lently, averaging) effectively collects only the amount of in-
formation provided by a small number of independent neurons.
If this is the way neuronal information is transmitted, the
system is grossly inefficient because of seemingly excessive
redundancy.

A response to this observation is that populations of neurons
may use more complicated integration mechanisms than simple
summation. If, for example, some form of population coding is
used, the effect disappears: as Abbott and Dayan (1999) have
shown, in a simple but intuitively reasonable framework,
correlation does not destroy the effectiveness of efficient de-
coding schemes. More specifically, they showed that the Fisher
information increases with the number of neurons when the
correlation takes one of several reasonable forms, assuming
that not all neurons have identical tuning functions. Thus, if
neuronal systems use more complicated computations than
summation their capacity to transmit information need not be
degraded dramatically by small trial-to-trial correlations.

A natural follow-up question is whether efficient decoding
schemes such as those discussed earlier benefit from using
correlation. A complete answer is not yet available. However,
there is some evidence that the correlation will enhance de-
coding if it itself contains relevant information about the
encoded parameter, such as movement velocity. For static
scenarios like those considered by Abbott and Dayan (1999),
Wu et al. (2001) showed that decoding schemes that ignore
correlation will remain efficient if the correlation does not
depend on the encoded parameter. Meanwhile, the M1 decod-
ing procedures of Gao et al. (2002) benefited from additional
information about movement parameters contained in the cor-
relation structure of multiple neurons. [See Hatsopoulos et al.
(2003), Nirenberg and Latham (2003), Reich et al. (2002),
Seriés et al. (2004), and references therein for related results
and discussion.]

D I S C U S S I O N

The field of statistics is devoted to the creation and elucida-
tion of a large body of tools for learning from data. We began
this overview by presenting several foundational ideas: that
probability models are used to describe data, that estimation
procedures may be formalized and evaluated using well-estab-
lished criteria such as mean squared error, and that methods
based on the likelihood function are optimal when the proba-
bility model is correct. These ideas are important partly be-
cause, with effort and care, it is often possible to develop good
probability models for experimental data. The evaluation
framework (e.g., the use of mean squared error) is also valu-
able because it continues to apply to nonparametric methods,
where modeling assumptions are relaxed. We illustrated the
general points with concrete applications to smoothing the
PSTH and JPSTH, and to decoding. Our intention has been, in
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particular, to explain the benefits of Bayesian methods and the
Bootstrap because both produce powerful and effective appli-
cations of simple concepts over a wide range of problems.

The highest-level message from our review is 3-fold. First,
simple statistical methods remain important, and we would
emphasize the great desirability of keeping things simple and
intuitive, and using easily comprehended figures whenever
possible. Second, when complicated situations present them-
selves and alternative statistical methods are available, it is
possible to invoke well-established statistical principles to
determine which of the methods is better and under what
circumstances. Finally, as we have illustrated, the differences
among alternative methods can be very substantial and the
issue of choosing among them can therefore be of great
practical importance.

We have chosen the topics of summarizing firing rate,
population coding and decoding, Poisson and non-Poisson
modeling, and assessing correlation in pairs of neurons partly
because they are important problems but also because we could
use them to illustrate the general statistical ideas we began
with. The general parametric and nonparametric probability-
modeling framework emphasized here is widely accepted in
the field of statistics. For an interesting dissenting opinion see
Breiman [2001; the discussions to that article by Cox (2001)
and by Efron (2001) are consistent with the point of view
expressed here]. We have not attempted here a comprehensive
survey of statistical methods in neurophysiology, and there are
clearly important gaps in our coverage. In particular, we would
like to single out the deep and important statistical challenges
associated with the analysis of multiple simultaneously re-
corded spike trains (Brown et al. 2004). Two conspicuous
difficulties are the complexity of spike sorting (e.g., Bar-Gad et
al. 2001; Harris et al. 2001) and the absence of well-developed
statistical methods for multiple point process data analysis. In
addition, there are algorithmic challenges associated with con-
struction of effective brain–machine interfaces, which is one of
the exciting applications of multiple spike-train signal process-
ing. We expect, however, that statistical thinking of a kind that
begins with the concepts we have presented in this review will
play a key role in meeting these challenges in the future.
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