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The problem of predicting the position of a freely foraging rat
based on the ensemble firing patterns of place cells recorded
from the CA1 region of its hippocampus is used to develop a
two-stage statistical paradigm for neural spike train decoding.
In the first, or encoding stage, place cell spiking activity is
modeled as an inhomogeneous Poisson process whose instan-
taneous rate is a function of the animal’s position in space and
phase of its theta rhythm. The animal’s path is modeled as a
Gaussian random walk. In the second, or decoding stage, a
Bayesian statistical paradigm is used to derive a nonlinear
recursive causal filter algorithm for predicting the position of the
animal from the place cell ensemble firing patterns. The algebra
of the decoding algorithm defines an explicit map of the dis-
crete spike trains into the position prediction. The confidence
regions for the position predictions quantify spike train infor-

mation in terms of the most probable locations of the animal
given the ensemble firing pattern. Under our inhomogeneous
Poisson model position was a three to five times stronger
modulator of the place cell spiking activity than theta phase in
an open circular environment. For animal 1 (2) the median
decoding error based on 34 (33) place cells recorded during 10
min of foraging was 8.0 (7.7) cm. Our statistical paradigm
provides a reliable approach for quantifying the spatial informa-
tion in the ensemble place cell firing patterns and defines a
generally applicable framework for studying information encod-
ing in neural systems.
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Neural systems encode their representations of biological signals
in the firing patterns of neuron populations. Mathematical algo-
rithms designed to decode these firing patterns offer one ap-
proach to deciphering how neural systems represent and transmit
information. To illustrate, the spiking activity of CA1 place cells
in the rat hippocampus correlates with both the rat’s position in
its environment and the phase of the theta rhythm as the animal
performs spatial behavioral tasks (O’Keefe and Dostrovsky, 1971;
O’Keefe and Reece, 1993; Skaggs et al., 1996). Wilson and Mc-
Naughton (1993) used occupancy-normalized histograms to rep-
resent place cell firing propensity as a function of a rat’s position
in its environment and a maximum correlation algorithm to
decode the animal’s position from the firing patterns of the place
cell ensemble. Related work on population-averaging and tuning
curve methods has been reported by Georgopoulos et al. (1986),
Seung and Sompolinsky (1993), Abbott (1994), Salinas and Ab-
bott (1994), and Snippe (1996).

Spike train decoding has also been studied in a two-stage

approach using Bayesian statistical methods (Bialek and Zee,
1990; Bialek et al., 1991; Warland et al., 1992; Sanger 1996; Rieke
et al., 1997; Zhang et al., 1998). The first, or encoding stage,
characterizes the probability of neural spiking activity given the
biological signal, whereas the second, or decoding stage, uses
Bayes’ rule to determine the most probable value of the signal
given the spiking activity. The Bayesian approach is a general
analytic framework that, unlike either the maximum correlation
or population-averaging methods, has an associated paradigm for
statistical inference (Mendel, 1995). To date four practices com-
mon to the application of the Bayesian paradigm in statistical
signal processing have yet to be fully applied in decoding analy-
ses. These are (1) using a parametric statistical model to repre-
sent the dependence of the spiking activity on the biological
signal and to test specific biological hypotheses; (2) deriving
formulae that define the explicit map of the discrete spike trains
into the continuous signal predictions; (3) specifying confidence
regions for the signal predictions derived from ensemble spike
train activity; and (4) implementing the decoding algorithm re-
cursively. Application of these practices should yield better quan-
titative descriptions of how neuron populations encode
information.

For example, the estimated parameters from a statistical model
would provide succinct, interpretable representations of salient
spike train properties. As a consequence, statistical hypothesis
tests can be used to quantify the relative biological importance of
model components and to identify through goodness-of-fit anal-
yses spike train properties the model failed to describe. A formula
describing the mapping of spike trains into the signal would
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demonstrate exactly how the decoding algorithm interprets and
converts spike train information into signal predictions. Confi-
dence statements provide a statistical measure of spike train
information in terms of the uncertainty in the algorithm’s predic-
tion of the signal. Under a recursive formulation, decoding would
be conducted in a causal manner consistent with the sequential
way neural systems update; the current signal prediction is com-
puted from the previous signal prediction plus the new informa-
tion in the spike train about the change in the signal since the
previous prediction.

We use the problem of position prediction from the ensemble
firing patterns of hippocampal CA1 place cells recorded from
freely foraging rats to develop a comprehensive, two-stage statis-
tical paradigm for neural spike train decoding that applies the
four signal processing practices stated above. In the encoding
stage we model place cell spiking activity as an inhomogeneous
Poisson process whose instantaneous firing rate is a function of
the animal’s position in the environment and phase of the theta
rhythm. We model the animal’s path during foraging as a Gauss-
ian random walk. In the decoding stage we use Bayesian statistical
theory to derive a nonlinear, recursive causal filter algorithm for
predicting the animal’s position from place cell ensemble firing
patterns. We apply the paradigm to place cell, theta phase, and
position data from two rats freely foraging in an open
environment.

MATERIALS AND METHODS
Experimental methods
Two approximately 8-month-old Long–Evans rats (Charles River Lab-
oratories, Wilmington, MA) were implanted with microdrive arrays
housing 12 tetrodes (four wire electrodes) (Wilson and McNaughton,
1993) using surgical procedures in accordance with National Institutes of
Health and Massachusetts Institute of Technology guidelines. Anesthesia
was induced with ketamine 50 mg/kg, xylazine 6 mg/kg, and ethanol 0.35
cc/kg in 0.6 cc/kg normal saline and maintained with 1–2% isoflurane
delivered by mask. The skin was incised, the skull was exposed, and six
screw holes were drilled. The skull screws were inserted to provide an
anchor for the microdrive assembly. An additional hole was drilled over
the right CA1 region of the hippocampus (coordinates, �3.5 anteropos-
terior, 2.75 lateral). The dura was removed, the drive was positioned
immediately above the brain surface, the remaining space in the hole was
filled with bone wax, and dental acrylic was applied to secure the
microdrive assembly holding the tetrodes to the skull. Approximately 2
hr after recovery from anesthesia and surgery, the tetrodes were ad-
vanced into the brain. Each tetrode had a total diameter of �45 �m, and
the spacing between tetrodes was 250–300 �m. The tips of the tetrodes
were cut to a blunt end and plated with gold to a final impedance of
200–300 K�.
Over 7 d, the electrodes were slowly advanced to the pyramidal cell

layer of the hippocampal CA1 region. During this period the animals
were food-deprived to 85% of their free-feeding weight and trained to
forage for randomly scattered chocolate pellets in a black cylindrical
environment 70 cm in diameter with 30-cm-high walls (Muller et al.,
1987). Two cue cards, each with different black-and-white patterns, were
placed on opposite sides of the apparatus to give the animals stable visual
cues. Training involved exposing the animal to the apparatus and allow-
ing it to become comfortable and explore freely. After a few days, the
animals began to forage for chocolate and soon moved continuously
through the environment.
Once the electrodes were within the cell layer, recordings of the

animal’s position, spike activity, and EEG were made during a 25 min
foraging period for animal 1 and a 23 min period for animal 2. Position
data were recorded by a tracking system that sampled the position of a
pair of infrared diode arrays on each animal’s head. The arrays were
mounted on a boom attached to the animal’s head stage so that from the
camera’s point of view, the front diode array was slightly in front of the
animal’s nose and the rear array was above the animal’s neck. Position
data were sampled at 60 Hz with each diode array powered on alternate
camera frames; i.e., each diode was on for 30 frames/sec, and only one

diode was illuminated per frame. The camera sampled a 256 � 364 pixel
grid, which corresponded to a rectangular view of 153.6 � 218.4 cm. The
animal’s position was computed as the mean location of the two diode
arrays in two adjacent camera frames. To remove obvious motion arti-
fact, the raw position data were smoothed off-line with a span 30 point (1
sec) running average filter. Missing position samples that occurred when
one of the diode arrays was blocked were filled in by linear interpolation
from neighboring data in the off-line analysis.
Signals from each electrode were bandpass-filtered between 600 Hz

and 6 kHz. Spike waveforms were amplified 10,000 times and sampled at
31.25 kHz/channel and saved to disk. A recording session consisted of
the foraging period bracketed by 30–40 min during which baseline spike
activity was recorded while the animal rested quietly. At the completion
of the recording session, the data were transferred to a workstation where
information about peak amplitudes and widths of the spike waveforms on
each of the four channels of the tetrode was used to cluster the data into
individual units, and assign each spike to a single cell. For animal 1 (2),
33 (34) place cells were recorded during its 25 (23) min foraging period
and used in the place field encoding and decoding analysis.
Continuous EEG data were taken from the same electrodes used for

unit recording. One wire from each tetrode was selected for EEG
recordings, and the signal was filtered between 1 Hz and 3 kHz, sampled
at 2 kHz/channel and saved to disk. The single EEG channel showing the
most robust theta rhythm was identified and resampled at 250 Hz, and
the theta rhythm was extracted by applying a Fourier filter with a pass
band of 6–14 Hz. The phase of the theta rhythm was determined by
identifying successive peaks in the theta rhythm and assuming that
successive peaks represented a complete theta cycle from 0 and 2�. Each
point between the peaks was assigned a phase between 0 and 2� pro-
portional to the fraction of the distance the point lay between the two
peaks (Skaggs et al., 1996). The theta rhythm does not have the same
phase at different sites of the hippocampus; however, the phase difference
between sites is constant. Hence, it is sufficient to model theta phase
modulation of place cell spiking activity with the EEG signal recorded
from a single site (Skaggs et al., 1996).

Statistical methods
The hippocampus encodes information about the position of the animal
in its environment in the firing patterns of its place cells. We develop a
statistical model to estimate the encoding process and a statistical algo-
rithm to decode the position of the animal in its environment using our
model estimate of the encoding process. We divide the experiment in
two parts and conduct the statistical paradigm in two stages: the encoding
and decoding stages. We define the encoding stage as the first 15 and 13
min of spike train, path, and theta rhythm data for animals 1 and 2,
respectively, and estimate the parameters of the inhomogeneous Poisson
process model for each place cell and the random walk model for each
animal. We define the decoding stage as the last 10 min of the experiment
for each animal and use the ensemble spike train firing patterns of the
place cells and random walk parameters determined in the encoding
stage to predict position.
To begin we define our notation. Let (0, T] denote the foraging interval

for a given animal and assume that within this interval the spike times of
C place cells are simultaneously recorded. For animals 1 and 2, T � 25
and 23 min respectively. Let ti

c denote the spike recorded from cell c at
time ti in (0, T], where c � 1, . . . , C, and C is the total number of place
cells. Let x(t) � [x1(t), x2(t)]� be the 2 � 1 vector denoting the animal’s
position at time t, and let �(t) be the phase of the theta rhythm at time
t. The notation x(t)� denotes the transpose of the vector x(t).
Encoding stage: the place cell model. Our statistical model for the place

field is defined by representing the spatial and theta phase dependence of
the place cell firing propensity as an inhomogeneous Poisson process. An
inhomogeneous Poisson process is a Poisson process in which the rate
parameter is not constant (homogeneous) but varies as a function of time
and/or some other physical quantity such as space (Cressie, 1993). Here,
the rate parameter of the inhomogeneous Poisson process is modeled as
a function of the animal’s position in the environment and phase of the
theta rhythm. The position component for cell c is modeled as a Gaussian
function defined as:

�x
c�t�x�t�, �x

c� � exp��c �
1
2� x�t� � �c��Wc

�1� x�t� � �c�� , (1)

where �c � [�c,1 , �c,2]� is the 2 � 1 vector whose components are the x1
and x2 coordinates of the place field center, �c is the location intensity
parameter,
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Wc � � 	c, 1
2 0
0 	c2

2 � (2)

is a scale matrix whose scale parameters in the x1 and x2 directions are
	c,1
2 and 	c,2

2 , respectively, and �x
c � [�c , �c ,Wc]. Our original formulation

of the place cell model included non-zero off-diagonal terms of the scale
matrix to allow varying spatial orientations of the estimated place fields
(Brown et al., 1996, 1997a). Because we found these parameters to be
statistically indistinguishable from zero in our previous analyses, we omit
them from the current model. The theta phase component of cell c is
modeled as a cosine function defined as:

�

c�t���t�, �


c� � exp	�ccos���t� � �c�
, (3)

where �c is a modulation factor, �c is the theta phase of maximum
instantaneous firing rate for cell c, and �


c � [�c , �c]. The instantaneous
firing rate function for cell c is the product of the position component in
Equation 1 and the theta rhythm component in Equation 3 and is given as:

�c�t�x�t�, ��t�, �x
c� � �x

c�t�x�t�, �x
c��


c�t���t�, �

c�, (4)

where � c � [� x
c, � 


c]. The maximum instantaneous firing rate of place cell
c is exp{�c � �c} and occurs at x(t) � �c and �(t) � �c. The instanta-
neous firing rate model in Equation 4 does not consider the modulation
of place cell firing propensity attributable to the interaction between
position and theta phase known as phase precession (O’Keefe and
Reece, 1993). We assume that individual place cells form an ensemble of
conditionally independent Poisson processes. That is, the place cells are
independent given their model parameters. In principle, it is possible to
give a more detailed formulation of ensemble place cell spiking activity
that includes possible interdependencies among cells (Ogata, 1981). Such
a formulation is not considered here. The inhomogeneous Poisson model
defined in Equations 1–4 was fit to the spike train data of each place cell
by maximum likelihood (Cressie, 1993). The importance of the theta
phase model component was assessed using likelihood ratio tests (Cas-
sella and Berger, 1990) and Akaike’s Information Criterion (AIC) (Box
et al., 1994).
After model fitting we evaluated validity of the Poisson assumption in

two ways using the fact that a Poisson process defined on an interval is
also a Poisson process on any subinterval of the original interval (Cressie,
1993). First, based on the estimated Poisson model parameters, we
computed for each place cell the 95% confidence interval for the true
number of spikes in the entire experiment, in the encoding stage and in
the decoding stage. In each case, we assessed agreement with the Poisson
model by determining whether the recorded number of spikes was within
the 95% confidence interval estimated from the model.
Second, for each place cell we identified between 10 to 65 subpaths on

which the animal traversed the field of that cell for at least 0.5 sec. The
region of the place field we sampled was the ellipse located at the place
cell center, which contained 67% of the volume of the fitted Gaussian
function in Equation 1. This is equivalent to the area within 1 SD of the
mean of a one-dimensional Gaussian probability density. The entrance
and exit times for the fields were determined using the actual path of the
animal. From the estimate of the exact Poisson probability distribution
on each subpath we computed the p value to measure how likely the
observed number of spikes was under the null hypothesis of a Poisson
model. A small p value would suggest that the data are not probable
under the Poisson model, whereas a large p value would suggest that the
data are probable and, hence, consistent with the model. If the firing
pattern along the subpaths truly arose from a Poisson process, then the
histogram of p values should be approximately uniform. A separate
analysis was performed for subpaths in the encoding and decoding stages
of each animal.
Encoding stage: the path model. We assume that the path of the animal

during the experiment may be approximated as a zero mean two-
dimensional Gaussian random walk. The random walk assumption
means that given any two positions on the path, say x(tk�1) and x(tk ), the
path increments, x(tk ) � x(tk�1), form a sequence of independent, zero
mean Gaussian random variables with covariance matrix:

Wx��k� � � 	x1
2 �	x1	x2

�	x1	x2 	x2
2 ��k , (5)

where 	x1
2 , 	x2

2 are the variances of x1 and x2 components of the incre-
ments, respectively, � is the correlation coefficient, and �k � tk � tk�1.
These model parameters were also estimated by maximum likelihood.

Following model fitting, we evaluated the validity of the Gaussian ran-
dom walk assumption by a 
2 goodness-of-fit test and by a partial
autocorrelation analysis. In the goodness-of-fit analysis, the Gaussian
assumption was tested by comparing the joint distribution of the ob-
served path increments with the bivariate Gaussian density defined by
the estimated model parameters. The partial autocorrelation function is
an accepted method for detecting autoregressive dependence in time
series data (Box et al., 1994). Like the autocorrelation function, the
partial autocorrelation function measures correlations between time
points in a time series. However, unlike the autocorrelation function, the
partial autocorrelation function at lag k measures the correlation be-
tween points k time units apart, correcting for correlations at lags k � 1
and lower. An autoregressive model of order p will have a nonzero
partial autocorrelation function up through lag p and a partial autocor-
relation function of zero at lags p � 1 and higher. Therefore, a Gaussian
random walk with independent increments should have uncorrelated
increments at all lags and, hence, its partial autocorrelation function
should be statistically indistinguishable from zero at all lags (Box et al.,
1994).
Decoding stage. To develop our decoding algorithm we first explain

some additional notation. Define a sequence of times in (te , T], te � t0 

t1 
 t2 , . . . , tk 
 tk�1, . . . , 
 tK � T, where te is the end of the encoding
stage. The tk values are an arbitrary time sequence in the decoding stage,
which includes the spike times of all the place cells. We define Ic(tk ) as
the indicator of a spike at time tk for cell c. That is, Ic(tk ) is 1 if there is
a spike at tk from cell c and 0 otherwise. Let I(tk ) � [I1(tk ), . . . , IC(tk )]�
be the vector of indicator variables for the C place cells for time tk. The
objective of the decoding stage is to find for each tk the best prediction of
x(tk ) in terms of a probability density, given C place cells, their place field
and theta rhythm parameters, and the firing pattern of the place cell
ensemble from te up through tk. Because the tk values are arbitrary, the
prediction of x(tk ) will be defined in continuous time. An approach
suggested by signal processing theory for computing the probability
density of x(tk ) given the spikes in (te , tk] is to perform the calculations
sequentially. Under this approach Bayes’ rule is used to compute recur-
sively the probability density of the current position from the probability
densities of the previous position and that of the new spike train data
measured since the previous position prediction was made (Mendel,
1995). The recursion relation is defined in terms of two coupled proba-
bility densities termed the posterior and one-step prediction probability
densities. For our decoding problem these two probability densities are
defined as:

Posterior probability density:

Pr� x�tk��spikes in �te , tk�� �

Pr� x�tk��spikes in �te , tk�1�� � Pr�spikes at tk�x�tk�, tk�1�

Pr�spikes at tk�spikes in �te , tk�1��
; (6)

One-step prediction probability density:

Pr� x�tk��spikes in �te , tk�1��

� �Pr� x�tk�1��spikes in �te , tk�1�� � Pr� x�tk��x�tk�1��dx�tk�1�. (7)

Before deriving the explicit form of our decoding algorithm, we
explain the terms in Equations 6 and 7 and the logic behind them. The
first term on the right side of Equation 6, Pr(x(tk )�spikes in (te , tk�1]), is
the one-step prediction probability density from Equation 7. It defines
the predictions of where the animal is likely to be at time tk given the
spike train data up through time tk�1. Equation 7 shows that the one-step
prediction probability density is computed by “averaging over” the ani-
mal’s most likely locations at time tk�1, given the data up to time tk�1 and
the most likely set of moves it will make in tk�1 to tk. The animal’s most
likely position at time tk�1, the first term of the integrand in Equation 7,
is the posterior probability density at tk�1. The animal’s most likely set of
moves from tk�1 to tk , Pr(x(tk )�x(tk�1)), is defined by the random walk
probability model in Equation 5 and again below in Equation 8. The
formulae are recursive because Equation 7 uses the posterior probability
density at time tk�1 to generate the one-step prediction probability
density at tk , which, in turn, allows computation of the new posterior
probability at time tk given in Equation 6. The second term on the right
side of Equation 6, Pr(spikes at tk�x(tk ), tk�1), defines the probability of a
spike at tk given the animal’s position at tk is x(tk ) and that the last
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observation was at time tk�1. This term is the joint probability mass
function of all the spikes at tk and is defined by the inhomogeneous
Poisson model in Equations 1–4 and below in Equation 9. Pr(spikes at
tk�spikes in (te , tk�1]) is the integral of the numerator on the right side of
Equation 6 and defines the normalizing constant, which ensures that the
posterior probability density integrates to 1.
Under the assumption that the individual place cells are conditionally

independent Poisson processes and that the path of the rat during
foraging in an open environment is a Gaussian random walk, Equations
6 and 7 yield the following recursive neural spike train decoding
algorithm:
State equation:

x�tk� � x�tk�1� � N�0, Wx��k��; (8)

Observation equation:

f�I�tk��x�tk�, tk�1� � �
c�1

C

	��c�x�tk���c�
 ��k��

Ic�tk�exp	��c�x�tk���c�
 ��k��
; (9)

One-step prediction equation:

x̂�tk�tk�1� � x̂�tk�1�tk�1�; (10)

One-step prediction variance:

W�tk�tk�1� � Wx��k� � W�tk�1�tk�1�; (11)

Posterior mode

x̂�tk�tk� � �W�tk�tk�1�
�1 � 	

c�1

C

Ac� x̂�tk�tk�, 
 ��k��Wc
�1��1

� �W�tk�tk�1�
�1x̂�tk�tk�1� � 	

c�1

C

Ac� x̂�tk�tk�, 
 ��k��Wc
�1 �c�;

(12)

Posterior variance:

W�tk�tk� � �W(tk�tk�1�
�1 � 	

c�1

C

Ac� x̂�tk�tk�, 
 ��k��Wc
�1

�	
c�1

C

�c� x̂�tk�tk���c�
 ��k��Wc
�1� x̂�tk�tk� � �c�� x̂�tk�tk� � �c��Wc

�1]�1,

(13)

where the notation �N(0, Wx(�k )) denotes the Gaussian probability
density with mean 0 and covariance matrix Wx(�k ), f(I(tk )�x(tk ), tk�1) is
the joint probability mass function of the spikes at time tk and x̂(tk�tk )
denotes the position prediction at time tk given the spike train up through
time tk. We also define:

Ac� x�tk�tk�, 
 ��k�� � Ic�tk� � �c� x�tk�tk���c�
 ��k��; (14)

�c�
 ��k�� � �
tk�1

tk

exp	�ccos���t� � �c�
dt, (15)

where �c[
(�k )] is the integral of the theta rhythm process (Eq. 3) on the
interval (tk�1, tk], and �c[x(tk�tk )] � �x

c[tk�x(tk ), �x
c] is given in Equation 1.

The prediction x̂(tk�tk ) in Equation 12 is the mode of the posterior
probability density, and therefore, defines the most probable position
prediction at tk given the ensemble firing pattern of the C place cells from
te up through tk. We term x̂(tk�tk ), the Bayes’ filter prediction and the
algorithm in Equations 8–13 the Bayes’ filter algorithm. As stated above,
the algorithm defines a recursion that begins with Equation 10. Under
the random walk model, given a prediction x(tk�1�tk�1) at tk�1, the best
prediction of position at tk , i.e., one step ahead, is the prediction at tk�1.
The error in that prediction, given in Equation 11, reflects both the
uncertainty in the prediction at tk�1, defined by W(tk�1�tk�1), and uncer-

tainty of the random walk in (tk�1, tk], defined byWx(�k ). Once the spikes
at tk are recorded, the position prediction at tk is updated to incorporate
this new information (Eq. 12). The uncertainty in this posterior predic-
tion is given by Equation 13. The algorithm then returns to Equation 10
to begin the computations for tk�1. The derivation of the Bayes’ filter
algorithm follows the arguments used in the maximum aposteriori esti-
mate derivation of the Kalman filter (Mendel, 1995) and is outlined in
Appendix. If the posterior probability density of x(tk ) is approximately
symmetric, then x̂(tk�tk ) is also both its mean and median. In this case, the
Bayes’ filter is an approximately optimal filter in both a mean square and
an absolute error sense. Equation 12 is a nonlinear function of x(tk�tk )
that is solved iteratively using a Newton’s procedure. The previous
position prediction at each step serves as the starting value. Using
Equation 13 and a Gaussian approximation to the posterior probability
density of x(tk ) (Tanner, 1993), an approximate 95% confidence (highest
posterior probability density) region for x(tk ) can be defined by the
ellipse:

� x�tk� � x̂�tk�tk���W�tk�tk�� x�tk� � x̂�tk�tk�� � 6, (16)

where 6 is the 0.95th quantile of the 
2 distribution with 2 df.
Interpretation of the Bayes’ filter algorithm. The Bayes’ filter algorithm

has a useful analytic interpretation. Equation 12 shows explicitly how the
discrete spike times, Ic(tk ) values, are mapped into a continuous position
prediction x̂(tk�tk ). This equation shows that the current position predic-
tion, x̂(tk�tk ), is a weighted average of the one-step position prediction,
x̂(tk�tk�1), and the place cell centers. The weight on the one-step predic-
tion is the inverse of the one-step prediction covariance matrix (Eq. 11).
If the one-step prediction error is high, the one-step prediction receives
less weight, whereas if the one-step prediction error is small, the one-step
prediction receives more weight. The weight on the one-step prediction
also decreases as �k increases (Eq. 11).

The weight on each place cell’s center is determined by the product of
a dynamic or data-dependent component attributable to Ac in Equation
14 and a fixed component attributable to the inverse of the scale matrices,
the Wc values, in Equation 2. For small �k , it follows from the definition
of the instantaneous rate function of a Poisson process that Ac may be
reexpressed as:

Ac� x�tk�, 
 ��k�� � Ic�tk� � Prc�spike at tk�x�tk�, 
 ��k��. (17)

Eq. 17 shows that Ac is equal to either 0 or 1 minus the probability of a
spike from cell c at tk given the position at tk and the modulation of the
theta rhythm in �k. Thus, for small �k , Ac gives a weight in the interval
(�1, 1). A large positive weight is obtained if a spike is observed when a
place cell has a low probability of a spike at tk given its geometry and the
current phase of the theta rhythm. This is a rare event. A large negative
weight is obtained if no spike is observed when a cell has a high
probability of firing. This is also a rare event. Equation 12 shows that
even when no cell fires the algorithm still provides information about the
animal’s most probable position. For example, if no place cell fires at tk ,
then all the place cell means receive negative weights, and the algorithm
interprets the new information in the firing pattern as suggesting where
the animal is not likely to be. The inverse of the scale matrices are the
fixed components of the weights on the place cell means and reflect the
geometry of the place fields. Place cells whose scale matrices have small
scale factors—highly precise fields—will be weighted more in the new
position prediction. Conversely, place cells with large scale factors—
diffuse place fields—will be weighted less. Viewed as a function of c and
tk , Ac defines for cell c at time tk the point process equivalent of the
innovations in the standard Kalman filter algorithm (Mendel, 1995).
At each step the Bayes’ filter algorithm provides two estimates of

position and for each an associated estimate of uncertainty. The one-step
position prediction and error estimates are computed before observing
the spikes at tk , whereas the posterior position prediction and error
estimates are computed after observing the spikes at tk. Because the tk
values are arbitrary, the Bayes’ filter provides predictions of the animal’s
position in continuous time. The recursive formulation of this algorithm
ensures that all spikes in (te , tk] are used to compute the prediction
x̂(tk�tk ). The Newton’s method of implementation of the algorithm shows
the expected quadratic convergence in two to four steps when the
previous position is the initial guess for predicting the new position.
Because the previous position prediction is a good initial guess, and the
distance between the initial guess and the final new position prediction is
small, a fast, linear version of Equation 12 can be derived by taking only
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the first Newton’s step of the procedure. This is equivalent to replacing
x̂(tk�tk ) on the right side of Equation 12 with x̂(tk�tk�1).

The representation of our decoding algorithm in Equations 8–13
shows the relation of our methods to the well known Kalman filter
(Mendel, 1995). Although the equations appear similar to those of the
standard Kalman filter, there are important differences. Both the obser-
vation and the state equations in the standard Kalman filter are contin-
uous linear functions of the state variable. In the current problem, the
state equation is a continuous function of the state variable, the animal’s
position. However, the observation process, the neural spike trains, is a
multivariate point process and a nonlinear function of the state variable.
Our algorithm provides a solution to the problem of estimating a con-
tinuous state variable when the observation process is a point process.
Bayes’ smoother algorithm. The acausal decoding algorithms of Bialek

and colleagues (1991) are derived in the frequency domain using Wiener
kernel methods. These acausal algorithms give an estimate of x(tk�T)
rather than x(tk�tk ) because they use all spikes observed during the
decoding stage of the experiment to estimate the signal at each tk. To
compare our algorithm directly with the acausal Wiener kernel methods,
we computed the corresponding estimate of x(tk�T) in our paradigm. The
estimates of x(tk�T) and W(tk�T) can be computed directly from x̂(tk�tk ),
x̂(tk�tk�1), W(tk�tk ), and W(tk�tk�1) by the following linear algorithm:

Ak � W�tk�tk�W�tk�1�tk��1; (18)

x̂�tk�T� � x̂�tk�tk� � Ak� x̂�tk�1�T� � x̂�tk�1�tk��; (19)

W�tk�T� � W�tk�tk� � Ak�W�tk�1�T� � W�tk�1�tk��A�k , (20)

where the initial conditions are x̂(T�T) and W(T�T) obtained from the last
step of the Bayes’ filter. Equations 18–20 are the well known fixed-
interval smoothing algorithm (Mendel, 1995). To distinguish x̂(tk�T) from
x̂(tk�tk ), we term the former Bayes’ smoother prediction.
Non-Bayes decoding algorithms. Linear and maximum likelihood (ML)

decoding algorithms can be derived as special cases of Equation 12.
These are:

x̂�tk�L � �	
c�1

C

nc��*k�Wc
�1��1 	

c�1

C

nc��*k�Wc
�1 �c , (21)

and

x̂�tk�ML � �	
c�1

C

A*c� x̂�tk�ML�Wc
�1��1 	

c�1

C

A*c� x̂�tk�ML�Wc
�1 �c , (22)

where �*k is the 1 sec interval ending at tk , nc(�*k ) is the number of spikes
from cell c in �*k , and A*c is Ac in Equation 14 with Ic(tk ) replaced by
nc(�*k ). The term A*c has approximately the same interpretation as Ac in
Equation 14. The derivation of these algorithms is also explained in
Appendix.
For comparison with the findings of Wilson and McNaughton (1993),

we also decoded using their maximum correlation (MC) method. This
algorithm is defined as follows. Let �ij

c denote the value of the occupancy-
normalized histogram of spikes from cell c on pixel ij. The MC prediction
at tk is the pixel that has the largest correlation with the observed firing
pattern of the place cells in �*k. It is defined as:

x̂�tk�MC � max
i, j 
 	

c�1

C

�nc��*k� � n��*k�� ��� ij
c � �ij��

�	
c�1

C

�nc��*k� � n��*k�� �2�1/2�	
c�1

C

�� ij
c � �ij��2�1/2� ,

(23)

where �ij is the average firing rate over the C cells at pixel location ij, and
n��*k � is the average of the spike counts over the C place cells in �*k.
Implementation of the decoding algorithms. Position decoding was per-

formed using the Bayes’ filter, ML, linear, MC, and Bayes’ smoother
algorithms. Decoding with the Bayes’ filter was performed with and
without the theta rhythm component of the model. With the exception of
the MC algorithm, position predictions were determined in all decoding
analyses at 33 msec intervals, the frame rate of the tracking camera. For

the MC algorithm the decoding was performed in 1 sec nonoverlapping
intervals. The ML prediction at tk was computed from the spikes in �*k ,
the 1 sec time window ending at tk. To carry out the ML decoding at the
frame rate of the camera and to give a fair comparison with the Bayes’
procedures, this time window was shifted along the spike trains every 33
msec for each ML prediction. Hence, there was a 967 msec overlap in the
time window used for adjacent ML predictions. The same 1 sec time
window and 33 msec time shift were used to compute the linear decoding
predictions. We tested time windows of 0.25, 0.5, and 1 sec and chose the
latter because the low spike counts for the place cells gave very unstable
position predictions for the shorter time intervals even when the intervals
were allowed to overlap. For integration time windows longer than 1 sec,
the assumption that the animal remained in the same position for the
entire time window was less valid. Zhang et al. (1998) found a 1 sec time
window to be optimal for their Bayes’ procedures.
Relationship among the decoding algorithms. The Bayes’ filter and the

non-Bayes’ algorithms represent distinct approaches to studying neural
computation. Under the Bayes’ filter, an estimate of a behavioral state
variable, e.g., position at a given time, is computed from the ensemble
firing pattern of the CA1 place cells and stored along with an error
estimate. The next estimate is computed using the previous estimate, and
the information in the firing patterns about how the state variable has
changed since the last estimate was computed. For the non-Bayes’
algorithms the computational logic is different. The position estimate is
computed from the place cell firing patterns during a short time window.
The time window is then shifted 33 msec and the position representation
is recomputed. The Bayes’ filter relies both on prior and new informa-
tion, whereas the non-Bayes’ algorithms use only current information.
Because the Bayes’ filter sequentially updates the position representa-
tion, it may provide a more biologically plausible description of how
position information is processed in the rat’s brain. On the other hand,
the non-Bayes’ algorithms provide a tool for studying the spatial infor-
mation content of the ensemble firing patterns in short overlapping and
nonoverlapping time intervals.
The Bayes’ filter is a nonlinear recursive algorithm that gives the most

probable position estimate at tk given the spike trains from all the place
cells and theta rhythm information up to through tk. The ML algorithm
yields the most probable position given only the data in a time window
ending at tk. Because this ML algorithm uses a 1 sec time window, it is
not the ML algorithm that would be derived from the Bayes’ filter by
assuming an uninformative prior probability density. The latter ML
algorithm would have a time window of 33 msec. Given the low firing
rates of the place cells, an ML algorithm with a 33 msec integration
window would yield position predictions that were significantly more
erratic than those obtained with a 1 sec window (see Fig. 4). Theta phase
information is also not likely to improve prediction accuracy of the ML
algorithm, because the 1 sec integration window averages approximately
eight theta cycles. In contrast, the Bayes’ filter has the potential to
improve the accuracy of its prediction by taking explicit account of the
theta phase information. For the Bayes’ filter with �k � 33 msec and an
average theta cycle length of 125 msec, each tk falls on average in one of
four different phases of the theta rhythm.
Equation 16 shows that the local linear decoding algorithm uses no

information about previous position or the probability of a place cell
firing to determine the position prediction. It simply weights the place
cell centers by the product of the number of spikes in the time interval �*k
and the inverse of the scale matrices. If no cell fires, there is no position
prediction. Because the algorithm uses no information about the place
cell firing propensities, it is expected to perform less well than either the
Bayes or the ML algorithms. The MC algorithm estimates the place cell
geometries empirically with occupancy-normalized histograms instead
of with a parametric statistical model. The position estimate determined
by this algorithm is a nonlinear function of the observed firing pattern,
and the weighting scheme is determined on a pixel-by-pixel basis by the
correlation between the observed firing pattern and the estimated place
cell intensities. The MC algorithm is the most computationally intensive
of the algorithms studied here because it requires a search at each time
step over all pixels in the environment.
The Bayes’ smoother derives directly from the Bayes’ filter by applying

the well known fixed-interval smoothing algorithm. Of the five algo-
rithms presented, it uses the most information from the firing pattern to
estimate the animal’s position. However, because it uses all future and all
past place cell spikes to compute each position estimate, it is the least
likely to have a biological interpretation. The Bayes’ smoother is helpful
more as an analytic tool than as an actual decoding algorithm because it
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shows algebraically how current and future information are combined to
make its position predictions. This algorithm makes explicit the relation
between the Bayes’ filter and a two-sided filter such as the acausal Wiener
filter procedures of Bialek et al. (1991).

RESULTS
Encoding stage: evaluation of the Poisson model fit to
the place cell firing patterns
The inhomogeneous Poisson model was successfully fit to the
place cell spike trains of both animals. Twenty-six of 34 place
cells for animal 1 and 24 of 33 cells for animal 2 had place fields
located along the border of the environment (Fig. 1). Seven of 34
cells for animal 1 and five of the place cells for animal 2 fired
preferentially in regions near the center of the environment. The
remaining single cell for animal 1 and four cells for animal 2 had
split fields. The split fields could be explained by these place cells

having two distinct regions of maximal firing and/or errors in
assigning spikes from the tetrode recordings to particular cells.
For each of the three types of place field patterns the fits of the
position modulation components of the Poisson model were con-
sistent with the occupancy-normalized histograms in terms of
shape and location of regions of maximum and minimum firing
propensity. For animal 1 (animal 2) 31 (32) of the 34 (33) place
cells had statistically significant estimates of the place parameters
�c,1, �c,2, 	c,1

2 , and 	c,2
2 , and 27 (33) of the 34 (33) place cells had

statistically significant estimates of �.
In addition to position modulation, there was statistically sig-

nificant theta phase modulation of the place cell firing patterns
for both animals. For animal 1 (2) the theta phases of maximal
firing were mostly between 180 and 360° (160 and 360°) with a
maximum near 360° (270°). We evaluated the statistical improve-

Figure 1. Pseudocolor maps of the fits of the inhomogeneous Poisson model to the place fields of three representative place cells from animal 2. The
panels show A, a field lying along the border of the environment; B, a field near the center of the environment; and C, a split field with two distinct regions
of maximal firing. Most of the place cells for both animals were like that of cell A (see Encoding stage: evaluation of the Poisson model fit to the place
cell firing patterns). The color bars along the right border of each panel show the color map legend in spikes per second. The spike rate near the center
of cell A is 25 spikes/sec compared with 12 spikes/sec for cells B and C. Each place field has a nonzero spike rate across a sizable fraction of the circular
environment.
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ment in the fit of the inhomogeneous Poisson model attributable
to inclusion of the theta rhythm by likelihood ratio tests and AIC.
The likelihood ratio tests showed that 25 of the 34 cells for animal
1 and 31 of the 33 cells for animal 2 had statistically significant
improvements in the model fits with the inclusion of the theta
component. For 28 of the 34 cells for animal 1 and 31 of the 33
place cells for animal 2, the better model by AIC included the
phase of theta rhythm. The individual parameter estimates allow
a direct quantitative assessment of the relative importance of
position and theta phase on place cell firing. For example, in Fig.
1, place cell B had an estimated maximal firing rate of exp(� � �)
� exp(1.91 � 0.56) � 11.82 spikes/sec at coordinates x1(t) �
40.37, x2(t) � 43.63, and theta phase �(t) � 0.61 radians. In the
absence of theta phase modulation the approximate maximum
firing rate would be exp(�) � exp(1.91) � 6.75 spikes/sec,
whereas in the absence of position modulation the maximum
firing rate would be exp(�) � exp(0.56) � 1.75 spikes/second.
With the exception of five place cells for animal 1 and one cell for
animal 2, all the � values were positive and in the range of
0.45–4.5. The � values were all in a narrow range between 0.06
and 0.5 for animal 1 and 0.03 and 1.1 for animal 2. For 25 of 34
place cells for animal 1 and 32 of 33 place cells for animal 2, � was
larger than �. The single place cell for animal 2 and the five of
seven place cells for animal 1 for which � was larger than � all
fired �200 spikes during the encoding stage. The median (mean)
ratio of exp(�) to exp(�) was 2.9 (5.0) for animal 1 and 5.3 (7.5)
for animal 2. Because the median is a more representative mea-
sure of central tendency in small groups of numbers (Velleman
and Hoaglin, 1981), these findings suggest that position is a three
to five times stronger modulator of place cell spiking activity than
theta phase under the current model.

Encoding stage: fit of the random walk model to
the path
For both animals there was close agreement between the variance
components of the Gaussian random walk estimated from the first
part of the path (encoding stage) and those estimated from the
full path (Eq. 5). The estimated variance components were 	x1

�
0.283 (0.440), 	x2

� 0.302 (0.393), and � � 0.024 (0.033) from the
encoding stage for animal 1 (animal 2). The estimated means
were all close to zero, and the small values of the correlation
coefficient � suggested that the x1 and x2 components of the
random walk are approximately uncorrelated.

Encoding stage: assessment of model assumptions
We present here the results of our goodness-of-fit analyses of the
inhomogeneous Poisson model fits to the place cell spike train
data and the random walk model fits to the animals’ paths. The
implications of these results for our decoding analysis and overall
modeling strategy are presented in the Discussion (see Encoding
stage: lessons from the random walk and goodness-of-fit
analyses).

Evaluation of the inhomogeneous Poisson
model goodness-of-fit
In this analysis the one place cell for animal 1 and the four place
cells for animal 2 with split fields were treated as separate units.
The separate units for the place field were determined by inspect-
ing the place field plot, drawing a line separating the two parts,
and then assigning the spikes above the line to unit 1 and the ones
below the line to unit 2. Hence, for animal 1, there are 35 � 34 �
1 place cell units, and for animal 2, there are 37 � 33 � 4 place
cell units. We first assessed the Poisson model goodness-of-fit for

the individual place cell units. We considered the number of
recorded spikes to agree with the prediction from the Poisson
model if the number recorded was within the 95% confidence
interval estimated from the model. In the encoding stage, for 30
of 35 place cell units for animal 1 and for 37 of 37 units for animal
2, the number of recorded spikes agreed with the model predic-
tion. This finding was expected because the model parameters
were estimated from the encoding stage data. In the decoding
stage, for only 8 of 35 place cell units for animal 1 and for 6 of 37
units for animal 2 did the number of recorded spikes agree with
the model predictions. Over the full experiment, for only 7 of 35
place cells for animal 1 and for 9 of 37 place cells for animal 2 did
the recorded and predicted numbers of spikes agree.

As stated in Statistical methods, for the goodness-of-fit analysis
of the Poisson model on the subpaths, we computed the p value
for the observed number of spikes on each subpath under the null
hypothesis that the true model was Poisson and that the true
model parameters were those determined in the encoding stage
(Fig. 2). If the firing patterns along all the subpaths truly arose
from a Poisson process then, the histogram of p values should be
approximately uniform. In the encoding stage, 33% of the 893
subpaths for animal 1 and 46% of the 885 subpaths for animal 2
had p � 0.05 (see the first bins of the histograms in Fig. 2,
Encoding Stage). Similarly, in the decoding stage, 37% of the 595
subpaths for animal 1 and 43% of the 475 subpaths for animal 2
had p � 0.05 (see the first bins of the histograms in Fig. 2,
Decoding Stage). As expected, both animals in both stages had
several subpaths with p � 0.95 because the expected number of
spikes on those trajectories was two or less. The large number of

Figure 2. Histograms of p values for the goodness-of-fit analyses of the
inhomogeneous Poisson model on the subpaths for the encoding (lef t
column) and decoding (right column) stages for animals 1 and 2. Each
place cell contributed 10–65 subpaths to the analysis. Each p value
measures for its associated subpath how likely the number of spikes
recorded on that subpath is under the Poisson model. The smaller the p
value the more improbable the recorded number of spikes is given the
Poisson model. If the recorded number of spikes on most of the subpaths
are consistent with the Poisson model then, the histogram should be
approximately uniform. The large numbers of subpaths whose p values are

0.05 for both animals in both the encoding and decoding stages prevent
the four histograms shown here from being uniform. This suggests that
the spike train data have extra-Poisson variation and that the current
Poisson model does not describe all the structure in the place cell firing
patterns.
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subpaths with small p values suggests that the place cell firing
patterns of both animals were more variable than would be
predicted by the Poisson model.

Evaluation of the random walk assumption
To assess how well the random walk model describes the animal’s
path, we evaluated the extent to which the path increments were
consistent with a Gaussian distribution and statistically indepen-
dent. We compared the goodness-of-fit of the bivariate Gaussian
model estimated in the encoding stage with the actual distribution
of path increments for each animal. Comparison of the path
increments with the confidence contours based on the bivariate
Gaussian densities showed that the observed increments differed
from the Gaussian model in two specific regions. The number of
points near the center of the distribution, i.e., within the 10%
confidence region, was greater than the Gaussian model would
predict. Animals 1 and 2 had 19.1 and 19.4% of their observa-
tions, respectively, within the 10% confidence region. Second,
instead of the expected 65% of their observations between the 35
and 90% confidence regions, animals 1 and 2 had, respectively,
42.1 and 42.8% in these regions. The agreement in the tails of the
distributions, i.e., beyond the 95th confidence contours, was very
good for both animals. A formal test of the null hypothesis that
the path increments are bivariate Gaussian random variables was
rejected for both animals (animal 1, 
9

2 � 7206.2; p 
 10�8;
animal 2, 
9

2 � 6274.2; p 
 10�8). The lack-of-fit between the
Gaussian model and the actual increments was readily visible in
the comparison of the marginal probability densities of the x1 and
x2 path increments estimated from the Gaussian model parame-
ters and those estimated empirically by smoothing the histograms
of the path increments with a cosine kernel (Fig. 3A,B). The
densities estimated by kernel smoothing appeared more like
Laplace rather than Gaussian probability densities: highly peaked
in the center. The distributions of the path increments were
therefore consistent with a symmetric, non-Gaussian bivariate
probability densities.

The assumption of independence was analyzed with the partial
autocorrelation functions of the path increments shown in Figure
3. Both animals showed strong temporal dependence in the path
increments. Both the x1 and x2 path increments for animal 1 have
large, statistically significant, first- and second-order partial auto-
correlations. That is, they are outside the �95% confidence
intervals for the partial autocorrelation function (Fig. 3C). This
animal also has smaller yet statistically significant partial autocor-
relations up through order 5. Similarly, for animal 2, the x1 and x2
increments had statistically significant partial autocorrelations up
through order 4 or 5 (Fig. 3D). These findings suggest that
second- and fourth-order autoregressive models would describe
well the structure in the path increments for animals 1 and 2,
respectively. Both animals also had statistically significant auto-
correlations at lags 30 and 31. These would be consistent with a
time dependence on the order of 1 sec (30 increments � 33
msec/increments � 1000 msec) in the data. This dependence was
most likely attributable to the effect of smoothing the path data to
remove obvious motion artifacts (see Experimental methods).
The path increments of both animals were dependent and con-
sistent with low-order bivariate autoregressive processes.

Decoding stage: position prediction from place cell
ensemble firing patterns
Figure 4 compared the performance of four of the decoding
algorithms on a 1 min segment of data taken from animal 2. Only

the plot of the results for the Bayes’ filter with the theta phase
component in the model is included in Figure 4 because the
results of the analysis without this component were similar. The
Bayes’ smoother results were close to those of both Bayes’ filters,
so the results of the former as well are not shown. The Bayes’
filter without the theta component and the Bayes’ smoother are
included below in our analysis of the accuracy of the decoding
algorithms. None of the four algorithms was constrained to give
predictions that fell within the bounds of the circular environ-
ment. The Bayes’ filter gave the best qualitative predictions of the
animal’s position (Fig. 4, Bayes’ Filter A–D). This algorithm
performed best when the animal’s path was smooth (Fig. 4, Bayes’
Filter A) and less well immediately after the animal made abrupt
changes in velocity (Fig. 4, Bayes’ Filter C,D). Its mean error was
significantly greater 1 sec after a large change in velocity (t test,
p 
 0.05). Because of the continuity constraint imposed by the
random walk, once the Bayes’ filter prediction reached a good
distance from the true path, it required several time steps to
recover and once again predict well the path following abrupt
changes in velocity (Fig. 4, Bayes’ Filter B,C). Even when the

Figure 3. Marginal probability densities estimated from the path incre-
ments, x(tk ) � x(tk�1), during the encoding stage for animal 1 (A) and
animal 2 (B). The solid line is the estimated Gaussian probability density
of the increments computed from the random walk parameters of the x1
coordinate (x direction) increments for animal 1 (A) and the x2 ( y
direction) coordinate increments for animal 2 (B). The dotted line in each
panel is the corresponding kernel density estimate of the increment
marginal probability density computed by smoothing the histogram of
path increments with a cosine kernel. The kernel methods provide model-
free estimates of the true probability densities of the path increments.
Although the Gaussian and corresponding kernel probability densities are
both symmetric, and agree in their tails, the kernel density estimates have
significantly more mass near their centers than predicted by the Gaussian
random walk model. C, D, Partial autocorrelation functions of the x1
coordinate (x direction) path increments for animal 1 (C) and the x2 ( y
direction) coordinate increments for animal 2 (D). The x-axes in these
plots are in units of increment lags, where 1 lag corresponds to 33 msec,
the sampling rate of the path (frame rate of the camera). The solid
horizontal lines are approximate 95% confidence bounds. The widths of
these bounds are narrow and imperceptible because the number of incre-
ments used to estimate the partial autocorrelation function is large
(27,000 for animal 1 and 23,400 for animal 2). Correlations following
outside these bound are considered statistically significant. Animal 1 (2)
has significant partial autocorrelations up to order 2 (4 or 5), suggesting
strong serial dependence in the path increments. The significant spikes at
lag 30 (�1 sec) in both panels is from the path smoothing (see Evaluation
of the random walk assumption).
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Figure 4. A continuous 60 sec segment of the true path (black line) from animal 2 displayed in four 15 sec intervals along with the predicted paths (red
line) from four decoding algorithms. Each column gives the results from the application of one decoding algorithm. The first column is the Bayes’ filter;
the second column, the maximum likelihood algorithm (ML); the third column, the linear algorithm; and the fourth column, the maximum correlation
procedure (MC). The rows show for each decoding algorithm the true and predicted paths for times 0–15 sec (row A), 15–30 sec (row B), 30–45 sec (row
C), and 45–60 sec (row D). For example, third column, row B shows the true path and the linear algorithm prediction for times 15–30 sec. The paths are
continuous between the rows within a column; e.g., where the paths end for the Bayes’ filter analysis ( first column) at approximately coordinates
x1(t) � 7 cm and x2(t) � 21 cm in row A is where they begin in row B. Position predictions are determined at each of the 1800 (60 sec � 30 points/sec)
points for each procedure with the exception of the MC algorithm. For the MC algorithm there are 60 predictions computed in nonoverlapping 1 sec
intervals. None of the algorithms is constrained to give predictions within the circle. Because of the continuity constraint of the random walk, the Bayes’
filter predictions are less erratic than those of the non-Bayes algorithms.
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Bayes’ procedure was recovering, it tended to capture the shape
of the true path (Fig. 4, Bayes’ Filter B,C). The position predic-
tions of the ML and linear decoding algorithms agreed qualita-
tively with the true path; however, both had many large erratic
jumps in the predicted path (Fig. 4, ML A–D, Linear A–D). The
large errors occurred in a short time span because these algo-
rithms have no continuity constraint and because the number of
spikes per cell in a 1 sec time window varied greatly because of
the low intrinsic firing rate of the place cells. On the other hand,
because these algorithms lack a continuity constraint, they could
adapt quickly to changes in the firing pattern, which suggested
abrupt changes in the animal’s velocity. The MC algorithm path
predictions were also erratic and more segmental in structure
because this algorithm estimated the animal’s position in non-
overlapping 1 sec intervals (Fig. 4, MC A–D).

The box plot summaries (Velleman and Hoaglin, 1981) in
Figure 5 showed that the error distributions—point-by-point dis-
tances between the true path and the predicted path—of the six
decoding algorithms for both animals are highly non-Gaussian

with large right skewed tails (Fig. 5). For animal 1 the smallest
mean (7.9 cm) and median (6.8 cm) errors were obtained with the
Bayes’ smoother followed by the ML method (mean and median
errors of 8.8 and 7.2 cm, respectively) and next by the two Bayes’
filter algorithms. The Bayes’ filter with the theta component had
mean and median errors of 9.1 and 8.0 cm, respectively, whereas
for the Bayes’ filter without the theta component the mean and
median errors were 9.0 and 8.0 cm, respectively. The perfor-
mance of the linear algorithm method (mean and median errors
of 11.4 and 10.3 cm, respectively) was inferior to that of the Bayes’
filter, whereas the MC algorithm had the largest mean and me-
dian errors of 31.0 and 29.6 cm, respectively.

When the methods were ranked in terms of their maximum
errors, they were, from smallest to largest: the Bayes’ filter with-
out the theta component (44.3 cm), the Bayes’ filter with the theta
component (46.0 cm), Bayes’ smoother (48.5 cm), linear (54.3
cm), ML (64.0 cm), and MC (73.4 cm). The error distributions of
the two Bayes’ filters, the Bayes’ smoother, and the ML algo-
rithms are approximately equal up to the 75th percentile (Fig. 5,
top edge of the boxes). Beyond the 75th percentile, the Bayes’ and
ML algorithms differ appreciably, with the latter having the larger
tail. As mentioned above, the large errors in the Bayes’ proce-
dures occurred most frequently immediately after abrupt changes
in the animal’s velocity. The large errors for the non-Bayes
methods were attributable to erratic jumps in the predicted path.
These occurred because the intrinsically low firing rates of the
place cells resulted in many time intervals during which few or no
cells fired. Therefore, without a continuity constraint position,
predictions of the non-Bayes’ algorithms were highly variable.
The smaller tails of the error distributions of the Bayes’ proce-
dures suggest that the errors these procedures made as a conse-
quence of being unable to track abrupt changes in velocity tended
to be smaller than the erratic errors of the non-Bayes’ algorithms
attributable to lack of a continuity constraint.

In general, the overall performance of the six decoding algo-
rithms was better in the analysis of the data from animal 2 (Fig.
5). With the exception of the MC algorithm, the error distribu-
tions of all the methods for animal 2 had smaller upper tails even
though the 75th percentiles were all larger than the corresponding
ones for animal 1. The error distribution of the linear algorithm
for animal 2 (mean error, 9.9 cm; median error, 8.6 cm) agreed
much more closely with those of the two Bayes’ filter algorithms
(mean error, 8.5 cm; median error, 7.7 cm with theta; mean error,
8.3 cm; median error, 7.7 cm without theta) and ML (mean error,
8.8 cm; median error, 7.0 cm) algorithms. As was true for animal
1, the largest error was from the MC algorithm (68.6 cm). The
maximum error of the linear algorithm (48.9 cm) was again less
than the maximum error for the ML algorithm (56.65 cm). The
maximum errors for the Bayes’ filter with and without the theta
phase component were, respectively, 31.8 and 30.6 cm.

The slightly better performance of the Bayes’ smoother in the
analysis of animal 1 might be expected, because this algorithm is
acausal and uses information from both the past and the future to
make position predictions. Our finding of minimal to no differ-
ences in the error distributions when the Bayes’ filter decoding
was performed with and without the theta rhythm component of
the model can be explained in terms of the relative sizes of the �
and � values as discussed above. Under the current Poisson
model, the average maximum modulation of the place cell firing
pattern attributable to the theta rhythm component is 1.1 spikes/
sec for animal 1 and 1.2 spikes/sec for animal 2. The phase of the
theta rhythm was statistically important for describing variation

Figure 5. Box and whisker plot summaries of the error distributions
(histograms)—point-by-point distances between the true and predicted
paths—for both animals for each of the six decoding methods. The bottom
whisker cross-bar is at the minimum value of each distribution. The
bottom border of the box is the 25th percentile of the distribution, and the
top border is the 75th percentile. The white bar within the box is the
median of distribution. The distance between the 25th and 75th percen-
tiles is the interquartile range (IQR). The top whisker is at 3 � IQR above
the 75th percentile. All the black bars above the upper whiskers are far
outliers. For reference, 
0.35% of the observations from a Gaussian
distribution would lie beyond the 75th percentile plus 1.5 � IQR, and

0.01% of the observations from a Gaussian distribution would lie
beyond the 75th percentile plus 3.0 � IQR. The box and whisker plots
show that all the error distributions, with the possible exception of the MC
error distribution for animal 1, are highly non-Gaussian with heavily
right-skewed tails.
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in the place cell firing patterns, even though the strength of theta
phase modulations was one-fifth to one-third of that for position.
The theta phase component had appreciably less effect on place
cell firing modulation relative to the position component, and
therefore, its inclusion in the decoding analysis did not improve
the position predictions. As expected, inclusion of theta phase did
not improve the ML procedure because this algorithm requires
an integration window. With an integration window of 1 sec and
an average theta cycle length of 125 msec, the theta effect is
averaged out for this algorithm.

The 95% confidence regions for the Bayes’ filter provide a
statistical assessment of the information the spike train contains
about the true path (Fig. 6). The lengths of the major axes of the
95% confidence regions for the Bayes’ filter were in good agree-

ment pointwise with the true error distributions for this algo-
rithm. The size of these confidence regions decreased inversely
with the number of cells that fired at tk. The accuracy of these
regions, however, depended on the number of cells which fired,
the local behavior of the true path, and the location of the place
fields in the environment. Four cases could be defined from the
confidence regions shown in Figure 6. These were (1) a small
confidence region and the predicted path close to the true path;
(2) a large confidence region and the predicted path close to the
true path; (3) a small confidence region and the predicted path far
from the true path; and (4) a large confidence region and the
predicted path far from the true path. Case 1 occurred most
frequently when the animal’s true path was locally smooth and the
number of cells firing was large. This is the explanation for the

Figure 6. The continuous 60 sec segment of the true path (black line) for animal 2 and the predicted path ( green line) for the Bayes’ filter in Fig. 4
replotted along with 11 95% confidence regions (red ellipses) computed at position predictions spaced 1.5 sec apart. The confidence regions quantify the
information content of the spike trains in terms of the most probable location of the animals at a given time point. Comparison of the predicted path
and its confidence regions with the true path provides a measure of the accuracy of the decoding algorithm. The sizes of the confidence regions vary
depending on the number of cells that fire, the shape of the true path, and the locations of the place fields (see Decoding stage: position prediction from
place cell ensemble firing patterns).
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small confidence regions in Figure 6, A and B. Case 2 corre-
sponded most often to the true path being locally smooth yet the
number of cells firing being small (Fig. 6B, large confidence
regions). The predicted path remained close to the true path
because of the continuity constraint. Case 3 typically occurred
when a large number of cells fired immediately after an abrupt
change in the animal’s velocity. The confidence region was small;
however, it represented less accurately the distance between the
true and predicted paths because the Bayes’ filter did not respond
quickly to the previous abrupt change in the rat’s velocity (Fig.
6B,C). Case 4 typically occurred when few cells fired and the
animal’s true path traversed a region of the environment where
few cells had place fields (Fig. 6D, large confidence region).

DISCUSSION
The inhomogeneous Poisson model gives a reasonable first ap-
proximation to the CA1 place cell firing patterns as a function of
position and phase of the theta rhythm. The model summarizes
the place field data of each cell in seven parameters: five that
describe position dependence and two that define theta phase
dependence. The analysis of the place cell field data with a
parametric statistical model makes it possible to quantify the
relative importance of position and theta phase on the firing
patterns of the place cells. Under the current model and experi-
mental protocol, position was a three to five times stronger
modulator of the place cell firing pattern than theta phase.

Our findings demonstrate that good predictions of a rat’s posi-
tion in an open environment (median error of �8 cm) can be
made from the ensemble firing pattern of �30 place cells during
stretches of up to 10 min. The model’s confidence regions for the
predictions agree well with the distribution of the actual errors.
These findings suggest that place cells carry a substantial amount
of information about the position of the animal in its environment
and that this information can be reliably quantified with a formal
statistical algorithm. These results extend the initial place cell
decoding work of Wilson and McNaughton (1993). These authors
used the MC algorithm to study position prediction from hip-
pocampal place cell firing patterns in three rats foraging ran-
domly in an open rectangular environment and reported an
average position prediction error of 30 cm for 30 place cells. This
result agrees with our finding of an average MC algorithm error
of 31.3 cm for animal 1 yet is twice as large as the 15 cm average
error obtained for animal 2 with this algorithm.

Including theta phase made a statistically significant improve-
ment in the fit of the Poisson model to the place cell spike trains
but no improvement in the prediction of position from the spike
train ensemble. The failure of the theta rhythm component to
improve position prediction could be attributed to position being
three to five times stronger than the theta phase component under
the current model. The lack of improvement may also be attrib-
utable to the omission from the current model of the position
theta phase interaction term or phase precession effect (O’Keefe
and Reece, 1993; Gerrard et al., 1995). We did not include this
term in our current model because analysis of spiking activity as
a function of position and theta phase revealed only a weak phase
precession effect in the place cells of both animals. This obser-
vation is consistent with the findings of Skaggs et al. (1996) that
phase precession is less prominent in open field compared with
linear track experiments. Another possible explanation for the
lack of improvement is that the decoding interval of 33 msec for
the Bayes’ filter remains long relative to the average theta cycle

length of 125 msec. A smaller interval may be required for the
theta modulation to affect the decoding results.

Our work is related to the recent report of Zhang et al. (1998),
who analyzed the performance of two Bayes’ and three non-
Bayes’ decoding procedures in predicting position from hip-
pocampal place cell firing patterns of rats running in a figure eight
maze. Their Bayes’ procedures gave the path predictions with the
smallest average errors. Two differences between our work and
theirs are worth noting. First, in our experiments the rats ran a
two-dimensional path by traversing the open circular environ-
ment in all directions. In their experiments the paths of the
animals were always one-dimensional because of the rectangular
shape of the figure eight maze. Second, our Bayes’ filter algorithm
computes position predictions in continuous time, and its recur-
sive formulation ensures that the prediction at time tk depends on
all the ensemble spiking activity up through tk. Their Bayes’
procedures compute the best position prediction at tk given the
ensemble firing activity in a 1 sec bin centered at tk either with or
without conditioning on the previous position prediction. Hence,
their position prediction at a given time uses spike train informa-
tion up to 500 msec into the future.

Our Bayes’ filter suggests that the rat’s position representation
can be sequentially updated based on changes in the spiking
activity of the hippocampal place cells. This position representa-
tion may correspond to activation in target areas downstream
from the CA1 region such as the subiculum or entorhinal cortex
in which prior state may influence current processing. This se-
quential computation approach to position representation and
updating is consistent with a path integration model of the rat
hippocampus (McNaughton et al., 1996). It also follows from
Equation 79 of Zhang et al. (1998) and the form of our Equation
12 that the Bayes’ filter can be implemented as a biologically
plausible feedforward neural network.

Encoding stage: lessons from the Poisson and random
walk goodness-of-fit analyses
The goodness-of-fit analysis is an essential component of our
paradigm, because it identifies data features not explained by the
model and allows us to suggest strategies for making improve-
ments. The place cell model has lack-of-fit; i.e., the model does
not represent completely the relation between place cell firing
propensity and the modulating factors such as position and theta
phase. Most of the place fields, especially those along the border
of the environment, can be approximated only to a limited degree
as Gaussian surfaces. As mentioned above, the current model
does not capture the phase precession effect. Lack-of-fit may also
be attributable to omission from the current model of other
relevant modulating factors such as the animal’s running velocity
(McNaughton et al., 1983, 1996; Zhang et al., 1998) and direction
of movement within the place field (McNaughton et al., 1983;
Muller et al., 1994).

Finally, although the inhomogeneous Poisson model is a good
starting point for developing an analysis framework, it will have to
be refined in future investigations. This model makes the strin-
gent assumption that the instantaneous mean and variance of the
firing rate are equal (Cressie, 1993) and ignores the neuron
refractory period. Hence, it is no surprise that this model should
not completely describe all the stochastic structure in the place
cell firing patterns. One-third to one-half of our place cells were
more variable than this Poisson model would predict. A similar
observation regarding place cells was recently reported by Fenton
and Muller (1998). Developing a wider class of statistical models
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to represent the spatial dependence of the firing patterns on the
animal’s position, incorporating the phase precession into the
analysis, allowing for other modulating variables, and replacing
the Poisson process with a more accurate interspike interval
model should improve our description of place cell firing propen-
sity and lead to more accurate decoding algorithms.

The random walk is a weak continuity assumption made to
implement the Bayes’ filter as a sequential algorithm. This con-
straint is one reason the path predictions of this algorithm closely
resembled the true path. Our goodness-of-fit analysis showed that
the path increments can be well described by low-order autore-
gressive models. Reformulating the path model to account explic-
itly for the autocorrelation structure in the path increments
should also improve the accuracy of our decoding algorithm. The
continuity constraint also means that the Bayes’ decoding strategy
assumes information read out from the hippocampus in these
experiments to be continuous. The findings in the current analysis
are consistent with this assumption. In cases in which information
read out may be discontinuous, such as hippocampal reactivation
during sleep (Buszaki, 1989; Wilson and McNaughton, 1994;
Skaggs and McNaughton, 1996), the Bayes’ filter could give mis-
leading results, and analysis with the ML algorithm may be more
appropriate.

Decoding stage: a statistical paradigm for neural spike
train decoding
Our decoding analysis offers analytic results not provided by
other procedures. Equations 12 and 14 define explicitly how a
position estimate is computed by combining information from the
previous estimate, the new spike train data since the previous
estimate, the model prediction of a spike at a given position, and
the geometry of the place fields. In other formulations of the
Bayes’ decoding algorithm the signal prediction is defined implic-
itly either in terms of its posterior probability density (Sanger,
1996; Zhang et al., 1998) or the Fourier transform of the decoding
filter (Rieke et al., 1997).

Our recursive formulation of the decoding algorithm differs
both from the Bayes’ procedures of Zhang et al. (1998) and from
the acausal Wiener kernel methods of Bialek and colleagues
(Rieke et al., 1997). Although a direct derivation of the causal
filter is described by Rieke et al. (1997), in reported data analyses,
Bialek and colleagues (1991) derived it from the acausal filter.
The Bayes’ filter obviates the need for this two-step derivation.
Moreover, Equations 18–20 define analytically the relation be-
tween our Bayes’ filter algorithm and the Bayes’ smoother, the
acausal counterpart to the Wiener kernel in our paradigm. In
qualitative applications of the decoding algorithms in which the
objective is to establish the plausibility of estimating a biologically
relevant signal from neural population activity, the distinction
between causal and acausal estimates is perhaps less important.
However, as decoding methods become more widely used to
make quantitative inferences about the properties of neural sys-
tems, this distinction will have greater significance.

Unlike previously reported decoding algorithms, the Bayes’
filter gives confidence regions for each position prediction. These
confidence regions (Eq. 16) provide an interpretable statistical
characterization of spike train information as the most probable
location of the animal at time tk , given all the spikes up through
tk. The more common approach to evaluating spike train infor-
mation is to use Shannon information theoretic methods (Bialek
and Zee, 1990; Bialek et al., 1991; Rieke et al., 1997). Zhang and
colleagues (1998) reported an alternative assessment of spike

train information by deriving the theoretical (Cramer–Rao) lower
bound on the average error in the position prediction. The Shan-
non and Cramer–Rao analyses provide measures of information
in the entire spike train, whereas our confidence intervals mea-
sure spike train information from the start of the decoding stage
up to any specified time. A further discussion of the relation
among these measures of information is given by Brown et al.
(1997b).

There are several possible ways to use our paradigm for further
study of spatial information encoding in the rat hippocampus. We
can analyze rates of place cell formation and their stability over
time. We can compare the algorithm’s moment-to-moment esti-
mates of the animal’s internal representation with external reality
under different experimental protocols. Low-order autoregres-
sive models can be used to evaluate different theories of naviga-
tion such as path integration and trajectory planning (McNaugh-
ton et al., 1996). Evaluation of how prediction accuracy changes
as a function of the number of place cells can provide insight into
how many place cells are needed to represent different types of
spatial information (Wilson and McNaughton, 1993; Zhang et al.,
1998). Our paradigm suggests a quantitative way to study the
patterns of place cell reactivation during sleep and, hence, to
investigate the two-stage hypothesis of information encoding into
long-term memory (Buszaki, 1989).

Conclusion
Decoding algorithms are useful tools for quantifying how much
information neural population firing patterns encode about bio-
logical signals and for postulating mechanisms for that encoding.
Although our statistical paradigm was derived using the problem
of decoding hippocampal spatial information, it defines a general
framework that can in principle be applied to any neural system in
which a biological signal is correlated with neural spiking activity.
The essential steps in our paradigm are representation of the
relation between the population spiking activity given the signal
with a parametric statistical model and recursive application of
Bayes’ theorem to predict the signal from the population spiking
activity. The information content of the spike train is quantified
in terms of the signal predictions and the confidence regions for
those predictions. The generality of our statistical paradigm sug-
gests that it can be used to study information encoding in a wide
range of neural systems.

APPENDIX

Derivation of the Bayes’ filter decoding algorithm
Define a sequence of times in (te , T], te � t0 
 t1 
 t2 , . . . , tk 

tk�1, . . . , 
 tK � T, where te is the end of the encoding stage. Let
I(tk) � [I1(tk), . . . , IC(tk)]� be the vector of indicator variables for
the C place cells for time tk. We assume that �k � tk � tk�1 is
sufficiently small so that the probability of more than one spike in
this interval is negligible. A spike occurring in �k is assigned to tk.
Let �k � [I(t1), . . . , I(tk)]� be the set of all indicators in (te , tk],
k � 1, . . . , K. The posterior and one-step prediction probability
densities from Equations 6 and 7 are:

f� x�tk���k� �
f� x�tk���k�1� f�I�tk��x�tk�, tk�1�

f�I�tk���k�1�
, (A.1)
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and

f� x�tk���k�1� � � f� x�tk�1���k�1� f� x�tk��x�tk�1��dx�tk�1�.

(A.2)

Under the assumption that the animal’s path may be approxi-
mated by a random walk, the conditional probability density of
x(tk) given in x̂(tk�1�tk�1) in Equation 8 is:

f� x�tk�� x̂�tk�1�tk�1�� �
1

2��Wx��k��1/2

� exp��
1
2
� x�tk� � x̂�tk�1�tk�1���Wx

�1��k�� x�tk� � x̂�tk�1�tk�1��� .
(A.3)

To start the algorithm we assume that x(t0) is given. Because �k

is small, we use Equations 4 and 15 to make the approximation

�
tk�1

tk

��u�x�u�, ��u�, ��du � �� x�tk����
 ��k��.

Then by Equations 9, A.1, and A.3, and the assumption that the
spike trains are conditionally independent inhomogeneous Pois-
son processes, the posterior probability density and the log pos-
terior probability density of x(t1) given �1 are, respectively,

f� x�t1���1��f� x�t1��x�t0�� f�I�t1��x�t1�, t0� �
1

2��Wx��1��1/2

� exp��
1
2
� x�t1� � x�t0���Wx

�1��1�� x�t1� � x�t0���
� �

c�1

C

	�c� x�t1���c�
 ��1��

Ic�t1�exp	��c� x�t1���c�
 ��1��
,

(A.4)

and

log f� x�t1���1� � �
1
2
� x�t1� � x�t0���Wx

�1��1�� x�t1� � x�t0��

� 	
c�1

C

Ic�t1��c �
1
2 	

c�1

C

Ic�t1�� x�t1� � �c��Wc
�1� x�t1� � �c�

� 	
c�1

C

Ic�t1�log �c�
 ��1��

�	
c�1

C

�c� x�t1���c�
 ��1��, (A.5)

where the normalizing constant has been neglected in Equation
A.4 and the constant and determinant terms have been neglected
in Equation A.5. The gradient of the log posterior probability
density is:

� log f� x�t1���1� � �Wx
�1��1�� x�t1� � x�t0��

� 	
c�1

C

Ic�t1�Wc
�1� x�t1� � �c�

� 	
c�1

C

exp��c �
1
2
�x�t1� � �c��Wc

�1�x�t1� � �c��
�c�
 ��1��Wc

�1�x�t1� � �c�. (A.6)

Setting log �f � 0 and solving for the mode gives:

x̂�t1�t1� � �Wx
�1��1� � 	

c�1

C

Ac� x̂�t1�t1�, 
 ��1��Wc
�1��1

�Wx��1�
�1x�t0� � 	

c�1

C

Ac� x̂�t1�t1�, 
 ��1��Wc
�1 �c�,

(A.7)

where Ac is defined in Equation 14. The Hessian of the log
posterior is:

�2 log f� x�t1���1� � �Wx
�1��1� � 	

c�1

C

Ac� x�t1�, 
 ��1��Wc
�1

� 	
c�1

C

�c� x�t1���c�
 ��1��Wc
�1� x�t1� � �c�� x�t1� � �c��Wc

�1.

(A.8)

If the posterior probability density in Equation A.4 is approxi-
mated by a Gaussian probability density, then its approximate
mean is x̂(t1�t1) and its approximate covariance matrix is:

W�t1�t1� � ���2 log f� x̂�t1�t1���1���1, (A.9)

(Tanner, 1993). Because we approximate f(x(t1)��
1) as a Gaussian

density, and because the random walk model is Gaussian, the
one-step prediction probability density of x(t2) given �1 is the
Gaussian density whose mean and variance are, respectively,

E� x�t2���1� � x̂�t1�t1� (A.10)

var� x�t2���1� � Wx��2� � W�t1�t1�.

We can now proceed by induction to compute f(x(tk)��
k). If

x̂(tk�1�tk�1) and W(tk�1�tk�1) have been computed, then Equa-
tions 10 and 11 follow from Equation A.10 by noting that at time
tk the mean and variance of the one-step prediction probability
density are, respectively,

E� x�tk���k�1� � x̂�tk�1�tk�1�, (A.11)

var� x�tk���k�1� � Wx��k� � W�tk�1�tk�1�

� W�tk�tk�1�.

The gradient and Hessian of the log posterior of x(tk) given �k

are, respectively,
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� log f� x�tk���k� � �W�1�tk�tk�1�� x�tk� � x̂�tk�1�tk�1��

� 	
c�1

C

Ic�tk�Wc
�1� x�tk� � �c�

� 	
c�1

C

exp��c �
1
2
� x�tk� � �c��Wc

�1� x�tk� � �c��
�c�
 ��k��Wc

�1� x�tk� � �c�, (A.12)

and

�2 log f� x�tk���k� � �W�1�tk�tk�1� � 	
c�1

C

Ac� x�tk�, 
 ��k��Wc
�1

�	
c�1

C

�c� x�tk���c�
 ��k��Wc
�1� x�tk� � �c�� x�tk� � �c��Wc

�1 .

(A.13)

Setting � log f(x(tk)��
k) � 0 and solving for x(tk) in Equation

A.12 gives Equation 12. Equation 13 is obtained by evaluating
�2 log f(x(tk)��

k) at x̂(tk�tk).

Derivation of the maximum likelihood and linear
decoding algorithms
The ML decoding algorithm is derived by defining the local
Poisson likelihood on �*k , the 1 sec interval ending at tk (Tib-
shirani and Hastie, 1987). The gradient in this case is the same as
in Equation A.12, except there is no term attributable to the
one-step prediction estimate, and Ic(tk) is replaced everywhere by
nc(�*k). The linear decoding algorithm follows from the ML
algorithm by setting �c[x(tk)]�

c[
(�k)] � 0 in A*c.
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