Some important topics will be omitted because high-quality solutions are already available in most software. For example, the generation of pseudo-random numbers is a classic topic, but existing methods built in to standard software packages will suffice for our needs. On the other hand, we will spend a bit of time on some classical numerical linear algebra ideas, because choosing the right method for solving a linear equation (for example) can have a huge impact on the time it takes to solve a problem in practice, particularly if there is some special structure that we can exploit.

Deterministic optimization

- Newton-Raphson, conjugate gradients, preconditioning, quasi-Newton methods, Fisher scoring, EM and its various derivatives

- Numerical recipes for linear algebra: matrix inverse, LU, Cholesky decompositions, low-rank updates, SVD, banded matrices, Toeplitz matrices and the FFT, Kronecker products (separable matrices), sparse matrix solvers

- Convex analysis: convex functions, duality, KKT conditions, interior point methods, projected gradients, augmented Lagrangian methods, convex relaxations

- Applications: support vector machines, splines, Gaussian processes, isotonic regression, LASSO and LARS regression

Graphical models: dynamic programming, hidden Markov models, forward-backward algorithm, Kalman filter, Markov random fields

Stochastic optimization: Robbins-Monro and Kiefer-Wolfowitz algorithms, simulated annealing, stochastic gradient methods

Deterministic integration: Gaussian quadrature, quasi-Monte Carlo. Application: expectation propagation

Monte Carlo methods

- Rejection sampling, importance sampling, variance reduction methods (Rao-Blackwellization, stratified sampling)

- MCMC methods: Gibbs sampling, Metropolis-Hastings, Langevin methods, Hamiltonian Monte Carlo, slice sampling. Implementation issues: burnin, monitoring convergence

- Sequential Monte Carlo (particle filtering)

- Variational and stochastic variational inference

Givens and Hoeting (2005) Computational statistics

Robert and Casella (2004) Monte Carlo Statistical Methods

Boyd and Vandenberghe (2004), Convex Optimization.

Press et al, Numerical Recipes

Sun and Yuan (2006), Optimization theory and methods

Fletcher (2000) Practical methods of optimization

Searle (2006) Matrix Algebra Useful for Statistics

Spall (2003), Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control

Shewchuk (1994), An Introduction to the Conjugate Gradient Method Without the Agonizing Pain

Boyd et al (2011), Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

Date | Topic | Reading | Notes |
---|---|---|---|

Jan 19 | Introduction | ||

Jan 26 | Gaussian processes and Bayesian optimization | Loper et al '20 for fast one-d GP inference. Mahsereci and Hennig (2016) on Bayesian linesearch, and Frazier '18 on Bayesian optimization. | See Rasmussen and Williams (2006) for more background on GP regression. Also notes by John Cunningham, Gardner et al '19, and some nice demos by Goertler et al '19 and Agnihotra and Batri '20. |

Feb 2 | Diffusion and transformer models | Sohl-Dickstein et al '15, Ho et al '20, Rombach et al '21, Vaswani et al '17 | Additional applications: Gong et al '22, Li et al '22 |

Feb 9, 16 | LASSO, nuclear norm, and Mone Carlo methods | Efron et al (2004), Friedman et al (2010), Bradley et al (2011), Tibshirani et al (2012), Andrieu et al (2003), Neal (2010) | More reading: Zou et al (2007), Mazumder et al (2010), Bach et al (2011), Boyd et al (2011) |

Feb 16 | Stochastic gradient descent | Bottou et al (2018) | More reading: Wilson et al (2018), Zhang et al (2015) |

Feb 23 | No class | ||

Mar 2 | Expectation maximization and variational inference | Dempster et al (1977), Neal and Hinton (1999), Blei et al (2016) | Generalizations: Knoblauch et al (2022) |

Mar 2 | Interpretable ReLU networks | Sudjianto et al (2020) | |

Mar 9 | 2-minute project idea presentations | ||

Mar 16 | Spring break | ||

Mar 23 | Graph neural networks | Sanchez-Lengeling et al (2021) | |

Mar 30 | Optimal transport | Peyre and Cuturi (2020), Arjovsky et al (2017) | |

Mar 30 | Dirichlet processes | Orbanz (2014) | |

Apr 6 | Graphical models; dynamic programming; message passing | Rabiner tutorial, Wainwright lecture notes | Background: Wainwright and Jordan (2008), MP and AMP notes by A. Maleki, Sarkka and Garcia-Fernandez (2019) on parallelizing HMM inference, Schniter et al (2016), Rush and Venkataramanan (2018) on VAMP and AMP |

Apr 6 | RNNs for chaotic dynamics | Mikhaeil et al '22 | |

Apr 13 | No class | ||

Apr 20 | Project presentations |