Date | Topic | Reading | Notes |
---|---|---|---|
Jan 18 | Introduction | Jan 25 | No class |
Feb 1 | Gaussian processes and Bayesian optimization | Loper et al '20 for fast one-d GP inference. Mahsereci and Hennig (2016) on Bayesian linesearch, and Frazier '18 on Bayesian optimization. | See Rasmussen and Williams (2006) for more background on GP regression. Also notes by John Cunningham, and some nice demos by Goertler et al '19 and Agnihotra and Batri '20. |
Feb 8 | Preconditioning, conjugate gradients, and likelihood approximations | Shewchuk `94, Gardner et al '19, Trippe et al '19, Ramirez et al '13 | Chan and Ng (1996) on PCG for Toeplitz systems, Huggins et al `18. |
Feb 15 | Dual decomposition, more Bayesian nonparametrics | Boyd et al (2011), Teh `10 | Broderick lectures on Bayesian nonparametrics |
Feb 22 | Bayesian workflow, Hamiltonian Monte Carlo | Gelman et al '20, Neal `10 | |
Mar 1 | Expectation maximization and variational inference | Dempster et al (1977), Neal and Hinton (1999), Blei et al (2016) | |
Mar 8 | 2-minute project idea presentations | ||
Mar 15 | Spring break | ||
Mar 22 | Quasi-Newton and sketching methods | Martens + Grosse `20, Goldfarb et al '21, Lacotte et al `21 | |
Mar 29 | Sequential Monte Carlo | Doucet and Johansen (2011), Pitt and Shephard (1999), Naesseth et al (2017), Le et al (2018), Lux (2018) | Further reading collected by A. Doucet; Kantas et al (2014) |
Apr 5 | Graphical models; dynamic programming; message passing | Rabiner tutorial, Wainwright lecture notes | Background: Wainwright and Jordan (2008), MP and AMP notes by A. Maleki, Sarkka and Garcia-Fernandez (2019) on parallelizing HMM inference, Schniter et al (2016), Rush and Venkataramanan (2018) on VAMP and AMP |
Apr 5 | Estimation-of-distribution algorithms | Krejca and Witt, `18; Doerr and Krejca, `20 | |
Apr 12 | Equilibrium learning methods | Daskalakis and Panageas `18, Lorraine et al `21 | |
Apr 19, 26 | Project presentations | Send me your report as a .pdf by the end of the month. |