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What is the problem?

Given pdf u(xy,za,...,2,) we are interested in
> argmax, .o . f(T1,T2,...,Tn)
» Calculating marginal pdf p;(x;)

> Calculating joint distribution pg(zs) for S C {1,2,...,n}

These problems are important because

» Many inference problems are in these forms

» Many applications in image procession, communication, machine learning,
signal processing

This talk: Marginalizing distribution

» Most tools are applied to other problems
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This talk: marginalization

Problem: Given pdf p(zq,zo,...,2z,) find p;(x;)

» Simplification: all z;'s are binary random variables
Is it difficult?

> Yes. No polynomial time algorithm

» Complexity of variable elimination: 2" 7!
Solution:

» No “good solution” for “generic p"

» Consider structured p



Structured p

Problem: Given pdf u(z1, 2, ..., z,) find p;(x;)
» Simplification: all z;'s are binary random variables

Example 1: x1,29,...,2, are independent

» Easy marginalization
> Not interesting

Example 2: Independent subsets

p(ry, e, .o wn) = py (T, ) o (Thaty - - > Tn)

» More interesting and less easy
» Complexity still exponential in terms of size of subsets

» Does not cover many interesting cases
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Structured p:Cont'd

Problem: Given pdf u(x1, o, ..., z,) find p;(x;)

» Simplification: all z;'s are binary random variables

Example 3: more interesting structure:
w2, wn) = py (25, )y (@s,) - - (s, )

» Unlike independence, S; N S; # 0
» Covers many interesting practical problems

> Let |S;| < n,Vi. Is marginalization easier than a generic p ?

o Not clear!! We introduce factor graph to address this question
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Factor graph

Slight generalization

1 ;.
M(Il, I27 P ,Z‘n) = E H q)[)a(ajsa) 1 Variable nodes Factor nodes
a€EF
2
» o : {0,1}1%2] 5 R not necessarily pdf a
b

» Z: normalizing constant. Called "partition
function"

> Ya(zs,): factors

Factor graph:

> Variable node: n nodes corresponding to
T1,%2,...,Tn n [ &

> Function node: |F| nodes corresponding to

wa(xsl),¢b(ws2), A

» Edge between a and variable node ¢ iff x; € S,
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Factor graph Cont'd

M($1,1'27. .. ,ZCn) = % H wa(xsa)

aCF Variable nodes Factor nodes
Factor graph: 1
» Variable node: n nodes corresponding to 2
T1,T2,...,Tn
» Function node: F' nodes corresponding to
Ya(zs,), Ys(xsy), .-
» Edge between a and variable node i iff x; € S, .
Some notation:
> Oa: neighbors of function node a: -8
n o

da={i:z; € Sa}.
» Oi: neighbors of variable node ¢

di={beF:i€ Sp}.



Factor graph example

1
w1, z2, 23) = E¢a($1,$2)7/1b(9527$3)
Variable nodes Factor nodes

Some notation:

1
> Oa: neighbors of function node a:
da = {1,2} 9 Z
ob = {2,3}
3 [ 2

> 0i: neighbors of variable node i

01 = {a}
92 = {a,b}

8/47



Why factor graph?

Factor graphs simplifies understanding structures
> Independence: graph has disconnected pieces
> Tree graphs: Easy marginalization

> Loops (specially short loops): generally make
the problem more complicated

Variable nodes Factor nodes




Marginalization on tree structured graphs

Tree: Graph with no loops

» Marginalization by variable elimination is
efficient on such graphs (distributions)

o Linearinn

o Exponential in size of factors

» Proof: on the board
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Summary of variable elimination on trees

Notation

> ,U/(Il,x27~~-,xn):Haqu/)a(xaa) ¢
> [ij—q: belief from variable node j to factor a

> [la—j: belief from factor node a to variable j

We also have

uaﬁj(.ﬁj) = Z wa(xaa) H p’@aa(xl)

{z;:j€0a\j} Leda\j

fisa(z;) = ] to—i(zy)
bedj\a
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Belief propagation algorithm on trees

Based on variable elimination on trees consider
iterative algorithm:

V;J;lj(xj) = Z %(xaa) H I/)E%a(xz)
{z;:5€0a\j} Leda\j
ZaACH IR | ZANICH
bedj\a
> !

a—; and ﬁ;aa are beliefs of nodes at time ¢

» Each node propagates its belief to other nodes
Hope: Converge to a “good” fixed point

vii(x)) T Ho ()

—00
V(i) = pi-n()



Belief propagation algorithm on trees

Belief propagation:

Vi) = YD alwea) [ #ioalae)

{z;:j€da\j} (€da\j
41 _ t A
Vj—m(xj) = H Vb%j(x])
bedj\a

Why BP and not variable elimination?

» On trees: no good reason

> loopy graphs: can be easily applied
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Belief propagation algorithm on trees

Belief propagation:

Vit (z) = YD valwoa) [ #ioalae)

{x;:j€da\j} £€0a\j ¢
~t41 _ t )
Vj—m(xj) = H Vbaj(m])
bedj\a

Lemma: On a tree graph BP converges to the
marginal distributions in finite number of
iterations, i.e,

Vi (%) 2 1))

iy (x5) o Hib(T5)
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Summary of belief propagation on trees

Equivalent to variable elimination
Exact on trees
Converges in finite number of iterations:

» 2 times the maximum depth of the tree.
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Loopy belief propagation

Apply belief propagation to loopy graph:

Véfj(xj) = Z Ya(T0a) H ﬁg—m(zf)
{z;:5€0a\j} Leda\j
vy = T v
bedj\a

Wiait until the algorithm converges:

» Announce Haeaj ve2, () as pj(a;)
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Challenges for loopy BP

Does not converge necessarily

» Example :
(@1, x2, x3) = L(z1 # 22)(z2 # x3)[(23 # 21)
1 2
o t =1 start with 1 =0
ot=2=>x2=1
ot=3=x3=0
ot=4=>x4=1
3

Even if converges, not necessarily the marginal
distribution

Can have more than one fixed point
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Advantages of loopy BP

In many applications, works really well
» Coding theory
> Machine vision

> compressed sensing

In some cases, loopy BP can be analyzed
theoretically
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Some theoretical results on loopy BP

BP equations have at least one fixed point

» Proof uses Brouwer’s theorem

> Does not necessarily converge to any of the
fixed points

BP is exact on trees

BP is “accurate” for “locally tree like" graphs

Gallager 1963, Luby et al. 2001, Richardson and Urbanke 2001

Several methods exist for verifying correctness of
BP

» Computation trees
» Dobrushin condition
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Locally tree like graphs

BP is “accurate”for “locally tree like" graphs

Heuristic: sparse graphs (without many edges)
can be “locally tree like"”

How to check?
» If girth(G) = O(log(n))
girth(G) is the length of the shortest cycle

» Random (dy,d.) graph is locally tree like with
high probability



Dobrushin condition

sufficient condition for convergence of BP

Influence of node j on node i:

Cij = sup{||p(w | wyvig) = plwi | @y )llry = o= VI §}

z,z

Intuition: if the influence of the nodes on each other is very small, then
oscillations should not occur

Theorem

If v = sup;(3_; Cij) < 1, then BP marginals
converge to the true marginals.




Summary of BP

Belief propagation:

viPL @) = Y ta(mea) [ Phal@)

{z;:j€0a\j} £€da\j
A1 _ t
Di5a(x) = H Vs (7;)
bedj\a

Exact on trees
Accurate on locally tree like graphs

No generic proving technique that works on all
problems

Successful in many applications, even when we
cannot prove convergence

N
N
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More challenges

What if pis a pdf on R™?

Extension seems straightforward

i) = f bolwor) T #aleoda
{z;:j€0a\s} ¢€da\j
) = T )

bedj\a

But, calculations become complicated
» Shall discretize the pdf with certain accuracy

» Do lots of numeric multiple integrtions

Exception: Gaussian graphical models

ex 7thz+ctz
> () = SRtz jetes)

> All messages become Gaussian

» NOT the focus of this talk
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Approximate message passing



Model

y=Az, +w
zo: k-sparse vector in R
A: n x N design matrix
y: measurement vector in R"

w: measurement noise in R"

k sparse signal

= |



LASSO

Many useful heuristic algorithms:

> Noiseless: ¢;-minimization
minimize
xT

subject to

lzll =2, =]

> Noisy: LASSO

1
minimize ||y —
z 2

Chen, Donoho, Saunders (96), Tibshirani (96)

[l

y = Ax

Az|)3 + |||



LASSO

Many useful heuristic algorithms:
> Noiseless: ¢1-minimization

minimize  ||z]]1
x

subject to y = Ax

lzll =2, =]
> Noisy: LASSO

1
minimize §||y—Ax||§—|—/\Hx||1
x
convex optimizations

Chen, Donoho, Saunders (96), Tibshirani (96)



Algorithmic challenges of sparse recovery

Use convex optimization tools to solve LASSO
Computational complexity:

> interior point method:
o generic tools

o appropriate for N < 5000



Algorithmic challenges of sparse recovery

Use convex optimization tools to solve LASSO
Computational complexity:

> interior point method:
o generic tools

o appropriate for N < 5000

» homotopy methods:
o use the structure of the LASSO

o appropriate for N < 50000



Algorithmic challenges of sparse recovery

Use convex optimization tools to solve LASSO
Computational complexity:

> interior point method:
o generic tools

o appropriate for N < 5000

» homotopy methods:
o use the structure of the LASSO

o appropriate for N < 50000

» First order methods

o Low computational complexity per iteration

o Require many iterations



Message passing for LASSO

Define:

p(de) = %e—w\lw\ll—ény—muzdx

» Z: normalization constant

» >0
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Message passing for LASSO

Define:

p(de) = %e—m\lw\ll—ény—muzdx

» Z: normalization constant

» >0

As 5 — oo:

» 1 concentrates around solution of LASSO: &*



Message passing for LASSO

Define:

p(de) = %e—m\lw\ll—ény—muzdx

» Z: normalization constant
» >0
As 5 — oo:
» 1 concentrates around solution of LASSO: &*

Marginalize j to obtain &
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Message passing algorithm

p(dz) = %eiﬂ)‘ Do el =5 Y7 (a—(A2)a)® .

Belief propagation update rules:
~ —BAls; ~ .
Vzt:t(sl) = g~ FAlsil Hb;ﬁa Vlgai(sl)

~ ~ - a—(As)q)?
Véai(si) = fe 3 (va—(42)a) Hj;éi dyjt'%a(sj)

Pearl (82)
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Issues of message passing algorithm

t+1 7B)\ S
Vz%a( ) ol H Vb—n
b#a

8
At ~ — S (ya—(AS)a
Va—m(sl)_ /6 2( ( Hd ]—Nl
J#i
Challenges:
> messages are distributions over real line
> calculation of messages is difficult

o Numeric integration

o The number of variables in the integral is N — 1
» The graph is not "tree like"

o No good analysis tools
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Challenges for message passing algorithm

~ ,—BA|s;
vitu(si) = e P T v
b#a

(o) 2 [ e Foe 0 TTang

J#i
Challenges:

> messages are distributions over real line
» calculation of messages is difficult

» The graph is not "tree like"
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Challenges for message passing algorithm

V) 2 N T
b#a

(o) 2 [ e Foe 0 TTang

J#i

Challenges:
> messages are distributions over real line
» calculation of messages is difficult
» The graph is not "tree like"
Solution:
> blessing of dimensionality:
o as N — oo: D!, .(s;) converges to Gaussian

t )
o as N — oo: v}_ (s;) converges to

fa(s;z,b) =

zg(x,b)

3
o—Blsl—%5

(s—2)?
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Simplifying messages for large N

Simplification of 2!, (s;)

ﬁéﬁi(si) =~ /e_g(ya_(AS)a)z HdV;A)a(SJ)
J#i

= [Eexp | —

o™

(ya — Agisi — ZAaij)z
J#i

_ g(Am-si - 2)?)

= Eexp(

Z="Ya— D2 AajS; L . W is Gaussian

Cé"
|Eh€7(Z) - ]Ehsl(W)| < W’
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Message passing

As N — oo, D% _,. converges to a Gaussian distribution.

Theorem

Let %, and (7} _,,/B) denote the mean and variance of distribution

Vi ,,- Then there exists a constant C{ such that

. C}

At t t
su 1 (s:) — (S [ S—
slp| a—m( l) a—m( l)| ZV(A; i)g’

IA

a—n(dsl) = B(Amslfza_”) /27, ds; ,

At
27TTa_n-

where

G — 0 ~t —
Ra—i = Ya — E Aajmj%aﬂ Ta—si = E Aa] j—ar
J#i J#i

Donoho, M., Montanari (11)
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Shape of v/ ; intuition

Summary

» U{_,.(s;) =~ Gaussian
> vt (si) 2 e PN, v i(si)

Shape of v/ ! (s;)

1—a

tHl oy = _ 1 —Bls|— & (s—=)?
> Vi—m(sl) = Z5h) e 20
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Message passing (cont'd)

Theorem

~t _ Tt E
Suppose that v, _,; = ¢;,_,;, with mean z
Then at the next iteration we have

vita(se) — ¢ (s < C/n,

¢:i>1a(81) =A fﬁ()‘si; A Z Abizlﬁaiv >‘2(1 + %t)) )
b#a

i

. At
_,; and variance 7,_,,

and

1 B 2
. b = — _ﬂlsl__(s_m) .
fg(s, Z, ) 2 (93, b) @ 2b

7t

t

Donoho, M., Montanari (11)
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Next asymptotic: § — oo

Reminder:

t t
> x;_,, meanof v;_,,
» 2! ., mean of 0% _,,;
P ¢
> Za—i = Ya — stﬁl Aajx]’ﬁa

; t
in terms of z, .7

H t
Can we write z_,,

t
'rj—m -

_ 1 /Sie—msi\—ﬁ(si—zb#a Apizt)?
zp

» Can be done, but ...

Laplace method simplifies it (5 — o0)

x;%a = ﬂ(z Abizlﬁai)'
b#a



Summary

t
Jj—a
t
a—1

mean of uj_m

mean of D! .

X

zZ

t §
Ra—i — Aa] Jj—a
J#i
t+1 _
Tisa = E :Abzzbaz
b#a
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Comparison of MP and IST

MP IST
a~>z = Z AU’J:L'J"“ a~>z E Aajmjﬁa
I J#i
t+1 _ E t+1
Tisa = Ablzb‘” z:a = E Abl’zb%z

b#a
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Approximate message passing

We can further simplify the messages

.'17t+1 _ U(xt—FATZt')\t)

S
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IST versus AMP

o
o
@

o
o
o

Mean square error

o
o
=

— State evolution
— Empirical

OO

10

20 30
Iteration

40

AMP:
xt+1 — n($t+ATZt;)\t)
t t 1 t t—
2= y— Az + [z |loz
0.05
— State evolution
. 0.04 — Empirical
<l
G 0,03
<4
5
% 0.02
< 0.01
s
0
003 10 20 30

Iteration

40

1
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Theoretical guarantees

We can predict the performance of AMP at every iteration in asymptotic
regime

Idea:
» ' 4+ AT 2" can be modeled as signal plus Gaussian noise
» We keep track of noise variance

> | will discuss this part in the "Risk Seminar"
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