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A golden age of statistical neuroscience

Some notable recent developments:

e machine learning / statistics / optimization methods for
extracting information from high-dimensional data in a

computationally-tractable, systematic fashion
e computing (Moore’s law, massive parallel computing)

e optical and optogenetic methods for recording from and
perturbing neuronal populations, at multiple scales

e large-scale, high-density multielectrode recordings

e growing acceptance that many fundamental neuroscience
questions are in fact statistics questions in disguise



A few grand challenges

e Optimal decoding and dimensionality reduction of
large-scale multineuronal spike train data

e (Circuit inference from multineuronal spike train data
e Optimal control of spike timing in large neuronal populations

e Hierarchical nonlinear models for encoding information in

neuronal populations

e Robust, expressive brain-machine interfaces; brain reading

and writing

e Understanding dendritic computation and
location-dependent synaptic plasticity via optical imaging
(statistical spatiotemporal signal processing on trees)
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Circuit inference

Record large-scale calcium movie

Aim 1: Extract spike times
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Aim 2: Estimate network model
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Aim 1: Model-based estimation of spike rates
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Note: each component here can be generalized easily.



Particle filter can extract spikes from

saturated recordings
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Optimal nonlinear filter given model; runs in linear time (like optimal linear filter).
Parameters inferred via expectation-maximization: no need for intracellular calibration

experiments (Vogelstein et al., 2009).



Another look: fast maximum a posteriori
(MAP) optimization

In standard linear filtering setting, forward-backward recursions also compute

MAP (because E(n|F) and n = arg max,, p(n|F') coincide if p(n|F) is Gaussian).
More generally, write out the posterior:
logp(C|F) = logp(C)+logp(F|C) + const.
= Z log p(Ci41|Ct) + Z log p(F|Ct) + const.
t t

Three basic observations:
o If logp(Ci41|Ct) and log p(F:|C}) are concave, then so is log p(C|F).

e Hessian H of log p(C|F) is tridiagonal: log p(F:|C:) contributes a diag term,
and log p(Ct+1|C}) contributes a tridiag term (Paninski et al., 2010).

e (' is a linear function of n.

Newton’s method: iteratively solve HCy;» = V. Tridiagonal solver requires O(T)
time. Can include nonneg constraint n; > 0 (Koyama and Paninski, 2010).

— Two orders of magnitude faster than particle filter: can process data from

~ 100 neurons in real time on a laptop (Vogelstein et al., 2010).



Example: nonnegative MAP filtering
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Multineuronal case: spatiotemporal demixing
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Goal: infer low-rank matrix C' from noisy Y
Additional structure: jumps in f;(¢) are non-negative

Rank-penalized convex optimization with nonnegativity constraints to infer C', followed
by iterative matrix factorization under nonnegativity constraints to infer s;(x), f;(t)
(Pnevmatikakis et al, 2013). Examples: [Machado| [Lacefield




Compressed sensing imaging

Idea: instead of raster scans, take randomized projections in each frame.
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(from Studer et al, 2011)

Estimating C' given randomized projections Y can still be cast as a convex

optimization.



Compressed sensing imaging

Spikes

True traces

100 200 300 400 500 600 700 800 900 1000

. Example trace
| [ | W | |
2 \J' ‘ \ \\ ‘Jw.!\ \\V\ | ~M J ~ \\ ~ J“‘\ '\»l\ N ]. \q *\. _

2 measurements per timestep (30x undersampling); Pnevmatikakis et al (2013)



Compressed sensing imaging
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4 measurements per timestep (15x undersampling); Pnevmatikakis et al (2013)



Compressed sensing imaging

Spikes

True traces

Estimated traces
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8 measurements per timestep (7.5x undersampling); Pnevmatikakis et al (2013)



Compressed sensing imaging
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5 measurements per timestep (25x undersampling); Pnevmatikakis et al (2013)



Aim 2: estimating network connectivity

stimulus filter point probabilistic
nonlinearity spiking
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Given the spike times in the network, Lj-penalized concave loglikelihood
optimization is easy (Paninski, 2004; Pillow et al., 2008). Fast, efficient methods

from generalized linear model, compressed sensing literature.



Monte Carlo EM approach

...But we only have noisy calcium observations; true spike times
are hidden variables. Thus an EM approach is once again

natural.
e E step: sample spike train responses n from p(n|F,0)

e M step: given sampled spike trains, perform L;-penalized
likelihood optimization to update parameters 6.

Both steps are highly parallelizable. Can also exploit many
sources of prior information about cell type, proximity,
anatomical likelihood of connectivity, etc.



Simulated circuit inference
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— conductance-based integrate-and-fire networks with biologically plausible connectivity
matrices, imaging speed, SNR (Mishchencko et al., 2009, 2011).

Good news: MAP connections are inferred with the correct sign, in just a couple

minutes of compute time, if we observe the full network.

Bad news: poor results unless we observe a large fraction of the network.



The dreaded common input problem

How to distinguish direct connectivity from common input?

A

(from Nykamp ‘07)

Previous work (e.g., Vidne et al, 2012) modeled common input terms
explicitly as latent variables; works well given enough a priori information,

but not a general solution.



A “shotgun” solution to the common input

problem

Idea: don’t observe the same subset of cells throughout the
experiment.

Instead, observe as many different subsets as possible.
Hard with multi-electrode arrays; easy with imaging approaches.

Statistics problem: how to patch together all of the estimated
subnetworks?

Solution: same EM approach discussed above.



A “shotgun” solution
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Aim 3: Optimal control of spike timing

To test our results, we want to perturb the network at will.

How can we make a neuron fire exactly when we want it to?
Assume bounded inputs; otherwise problem is trivial.
Start with a simple model:

Moo= f(Vi+ M)
Vieaw = Vi+dt(—gVi+aly) + Vdtoe, e ~ N(0,1).

Now we can just optimize the likelihood of the desired spike
train, as a function of the input I;, with I; bounded.

Concave objective function over convex set of possible inputs I;
+ Hessian is tridiagonal = O(T") optimization.

— again, can be done in real time (Ahmadian et al., 2011).



Simulated electrical control of spike timing
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.. solutions are less intuitive in case of more complicated encoding models,
multineuronal cases, etc. (Ahmadian et al., 2011)



Example: intracellular control of spike timing
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Applications

- sensory prosthetics, e.g. retinal prosthetics

- online adaptive experimental design: choose stimuli which

provide as much information about network as possible.

Shababo, Paige et al (2013)
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Aim 4: Connectivity at the dendritic scale
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The filtering problem

Spatiotemporal imaging data opens an exciting window on the
computations performed by single neurons, but we have to deal with noise
and intermittent observations.
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Basic paradigm: compartmental models

S-
) o+

e write neuronal dynamics in terms of equivalent nonlinear, time-varying
RC circuits

e leads to a coupled system of stochastic differential equations



Inference of spatiotemporal neuronal state

given noisy observations

Variable of interest, g;, evolves according to a noisy differential equation (e.g.,

cable equation):

dg/dt = f(q) + e

Make noisy observations:
y(t) = g(q:) +ne.

We want to infer E(q:|Y): optimal estimate given observations. We also want

errorbars: quantify how much we actually know about ¢;.

If f(.) and g(.) are linear, and ¢; and n; are Gaussian, then solution is classical:
Kalman filter.

Extensions to nonlinear dynamics, non-Gaussian observations: hidden Markov

(“state-space”) model, particle filtering (Huys and Paninski, 2009)



Basic idea: Kalman filter

Dynamics and observation equations:
dV /dt = AV + &,
Ve = Bt‘? + 1
Vi(t) = voltage at compartment 4

A = cable dynamics matrix: includes leak terms (A;; = —g;) and

intercompartmental terms (A;; = 0 unless compartments are adjacent)

B; = observation matrix: point-spread function of microscope

Even this case is challenging, since d = dim(V) is very large
Standard Kalman filter: O(d®) computation per timestep (matrix inversion)

(Paninski, 2010): methods for Kalman filtering in just O(d) time: take advantage

of sparse tree structure.



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR
observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can
approximate Kalman covariance C; = cov(q:|Y1.t) as a perturbation of the

marginal covariance Cy + U, Dy UtT , with Cy = lim; o cov(gy).

Co is the solution to a Lyapunov equation. It turns out that we can solve
linear equations involving Cy in O(dim(q)) time via Gaussian belief

propagation, using the fact that the dendrite is a tree.

The necessary recursions — i.e., updating U;, D; and the Kalman mean

FE(q¢|Y1.t) — involve linear manipulations of Cy, using
C; = [(AC,1A"+Q) '+ B!
Co +U;D,UY = ([A(Co + Up1 Dy UL AT + Q1™ + B,)

and can be done in O(dim(q)) time (Paninski, 2010). Generalizable to

many other state-space models (Pnevmatikakis and Paninski, 2011).

Examples: [specklel [vertical




Applications

e Optimal experimental design: which parts of the neuron

should we image? Submodular optimization (Huggins and
Paninski, 2011)

e Estimation of biophysical parameters (e.g., membrane
channel densities, axial resistance, etc.): reduces to a simple

nonnegative regression problem once V(x,t) is known (Huys
et al., 2006)

e Detecting location and weights of synaptic input



Application: synaptic locations/weights




Application: synaptic locations/weights

synaptic weights

-synaptic neuron



Application: synaptic locations/weights

Including known terms:

dV /dt = AV (t) + WU (t) + &(t);

U(t) are known presynaptic spike times, and we want to detect which

compartments are connected (i.e., infer the weight matrix W).

Loglikelihood is quadratic; W is a sparse vector. Li-penalized loglikelihood can

be optimized efficiently with homotopy (LARS) approach.

Total computation time: O(dTk); d = # compartments, T = # timesteps, k = #

nonzero weights.



Example: real neural geometry
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700 timesteps observed; 40 compartments (of > 2000) observed per timestep

Note: random access scanning essential here: results are poor if we observe the

same compartments at each timestep (Pakman, Huggins et al 2013).



Conclusions

e Modern statistical approaches provide flexible, powerful

methods for answering key questions in neuroscience

e Close relationships between biophysics, statistical modeling,
and experimental design

e Modern optimization methods make computations very
tractable; suitable for closed-loop experiments

e Ixperimental methods progressing rapidly; many new
challenges and opportunities for breakthroughs based on
statistical ideas
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