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Some exciting open challenges for

statistical neuroscience

• inferring biophysical neuronal properties from noisy recordings

• reconstructing the full dendritic spatiotemporal voltage from noisy,

subsampled observations

• estimating subthreshold voltage given superthreshold spike trains

• extracting spike timing from slow, noisy calcium imaging data

• reconstructing presynaptic conductance from postsynaptic voltage

recordings

• inferring connectivity from large populations of spike trains

• decoding behaviorally-relevant information from spike trains

• optimal control of neural spike timing

— to solve these, we need to combine the two classical branches of

computational neuroscience: dynamical systems and neural coding



An inverse problem: inferring cable equation

parameters

Can we recover detailed biophysical properties?

• Active: membrane channel densities

• Passive: axial resistances, “leakiness” of membranes

• Dynamic: spatiotemporal synaptic input



Estimating biophysical parameters from V (x, t)

Key point: if we observe full Vi(t) + cell geometry, channel kinetics known

+ current noise is Gaussian,

then estimating unknown parameters is standard convex nonnegative

regression problem (albeit high-d): minθ≥0 ||Y − Xθ||2.



Estimating channel densities from V (t)

(Huys et al., 2006)



Estimating channel densities from V (t)
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Estimating non-homogeneous channel

densities



The filtering problem

Spatiotemporal imaging data is very exciting, but we have to

deal with noise and intermittent observations.

(Djurisic et al., 2004)



Basic paradigm: the Kalman filter

Variable of interest, qt, evolves according to a noisy differential

equation (Markov process):

dq/dt = f(qt) + ǫt.

Make noisy observations:

yt = g(qt) + ηt.

We want to infer E(qt|Y ): optimal estimate given observations.

If f(.) and g(.) are linear, and ǫt and ηt are Gaussian, then

solution is classical: Kalman filter. More general problems:

particle filter (Huys and Paninski, 2009).

Basic Kalman filter requires O(dim(q)3T ) time. Reduction to

O(qT ) by exploiting tree structure of dendrite (Paninski, 2009).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_speckle.mp4
Media File (video/mp4)



Example: summed observations

(Loading low-rank-horiz.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_horiz.mp4
Media File (video/mp4)



Part 2: Reinterpreting the STRF

Classic method for estimating spectrotemporal receptive field:

fit the linear-Gaussian regression model

nt = ~k · ~xt + ǫt, ǫt ∼ N (0, σ2).

The STRF ~k weights the stimulus ~xt; ǫt models variability of

response nt.

Pros:

• analytical solution for optimal k̂.

• easy to incorporate prior assumptions on ~k (e.g.,

smoothness); Bayesian smoothing methods built in to

STRFPak.



Part 2: Reinterpreting the STRF

Classic method for estimating spectrotemporal receptive field:

fit the linear-Gaussian regression model

nt = ~k · ~xt + ǫt, ǫt ∼ N (0, σ2).

The STRF ~k weights the stimulus ~xt; ǫt models variability of

response nt.

Cons:

• Gaussian model is not really accurate for spike trains.

• responses nt can be negative.

• given stimulus ~xt, responses nt are independent: no

refractoriness, burstiness, firing-rate adaptation, etc.



Generalized linear model

p(nt = 1) = λtdt

λt = f(~k · ~xt +
∑

j

ajnt−j)



GLM likelihood

λt = f(~k · ~xt +
∑

j

ajnt−j)

Key points:

• f convex and log-concave =⇒ log-likelihood concave in ~θ.

Easy to optimize, so estimating θ̂ is very tractable.

• Easy to include smoothing (as in STRFPak) or sparsening

priors.

• Can also include nonlinear terms easily (Gill et al., 2006;

Ahrens et al., 2008)



Model performance: zebra finch MLd

(Calabrese, Schneider, Woolley et al. 2009)



Application: fast optimal decoding

Maximize log p(~x|n, ~θ) with respect to ~x. Concave optimization.
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Can be computed quickly: O(T ) time (Ahmadian et al., 2009). Fast decoding enables

perturbation analysis: how important is each spike? Leads to decoding-based spike-train

metric (Ahmadian et al., 2008).



Decoding a full song



Application: optimal stimulus design

Idea: we have full control over the stimuli we present. Can we

choose stimuli ~xt to maximize the informativeness of each trial?

— More quantitatively, optimize I(nt; θ|~xt) with respect to ~xt.

Maximizing I(nt; θ; ~xt) =⇒ minimizing uncertainty about θ.

In general, very hard to do: high-d integration over θ to

compute I(nt; θ|~xt), high-d optimization to select best ~xt.

GLM setting makes this surprisingly tractable

(Lewi et al., 2009).



Infomax vs. randomly-chosen stimuli



Simulated example

— infomax can be an order of magnitude more efficient.



Application to real data: choosing an optimal

stimulus sequence

— stimuli chosen from a fixed pool; greater improvements

expected if we can choose arbitrary stimuli on each trial.



Part 3: circuit inference



Challenge: slow, noisy calcium data

First-order model:

Ct+dt = Ct − dtCt/τ + Nt; Nt > 0; yt = Ct + ǫt

— τ ≈ 100 ms; nonnegative deconvolution problem. Can be solved by O(T )

relaxed constrained optimization methods (Vogelstein et al., 2008) or sequential

Monte Carlo (Vogelstein et al., 2009).



Particle filter can extract spikes from

saturated recordings

— saturation model: yt = g(Ct) + ǫt (Vogelstein et al., 2009)



Simulated circuit inference
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— Connections are inferred with the correct sign in conductance-based integrate-and-fire

networks with biologically plausible connectivity matrices (Mishchencko et al., 2009).



Optimal control of spike timing

Optimal experimental design and neural prosthetics applications

require us to perturb the network at will. How can we make a

neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(~k ∗ It + ht).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It

+ Hessian is banded =⇒ O(T ) optimization.



Optimal electrical control of spike timing
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Optical conductance-based control of spiking
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Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between encoding, decoding, and

experimental design (Paninski et al., 2007)

• Log-concavity, banded matrix methods make computations

very tractable

• Experimental methods progressing rapidly; many new

challenges and opportunities for applications of statistical

ideas
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