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The coming statistical neuroscience decade

Some notable recent developments:

• machine learning / statistics methods for extracting

information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing)

• optical methods (eg two-photon, FLIM) and optogenetics

(channelrhodopsin, viral tracers, “brainbow”)

• high-density multielectrode recordings (Litke’s 512-electrode

retinal readout system; Shepard’s 65,536-electrode active

array)



Example: neural prosthetics



Example: neural prosthetics

(Loading monkey-zombies.mp4)
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Example: retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs



Receptive fields tile visual space



Multineuronal point-process model

— likelihood is tractable to compute and to maximize (concave optimization)

(Paninski, 2004; Paninski et al., 2007; Pillow et al., 2008; Paninski et al., 2010)



Predicting single-neuron responses
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— model captures high precision of retinal responses. Also captures

correlations between neurons.



Optimal Bayesian decoding

E(~x|spikes) ≈ arg max~x log P (~x|spikes) = arg max~x [log P (spikes|~x) + log P (~x)]

(Loading yashar-decode.mp4)

— Computational points:

• log P (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of log P (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2010).


Convertified by iSquint - http://www.isquint.org
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Optimal Bayesian decoding

— further applications: decoding velocity signals (Lalor et al., 2009), tracking images

perturbed by eye jitter (Pfau et al., 2009)

— paying attention to correlations improves decoding accuracy (Pillow et al., 2008).



Inferring cone maps



Inferring cone maps

— cone locations and color identity inferred accurately with high-resolution

stimuli; Bayesian approach integrates information over multiple simultaneously

recorded neurons (Field et al., 2010).



Another major challenge: circuit inference



Challenge: slow, noisy calcium data

First-order model:

Ct+dt = Ct − dtCt/τ + rt; rt > 0; yt = Ct + ǫt

— τ ≈ 100 ms; nonnegative deconvolution problem. Can be solved by new fast

methods (Vogelstein et al., 2009; Vogelstein et al., 2010; Mishchenko et al., 2010).



Spatiotemporal Bayesian spike estimation

(Loading Tim-data.mp4)
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Simulated circuit inference
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— Connections are inferred with the correct sign in conductance-based integrate-and-fire

networks with biologically plausible connectivity matrices (Mishchencko et al., 2009).

Good news: connections are inferred with the correct sign. Fast enough to

estimate connectivity in real time (T. Machado). Next step: close the loop.



A final challenge: understanding dendrites

Ramon y Cajal, 1888.



A spatiotemporal filtering problem

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.



Inference of spatiotemporal neuronal state

given noisy observations

Variable of interest, Vt, evolves according to a noisy differential equation (e.g.,

cable equation):

dV/dt = f(V ) + ǫt.

Make noisy observations:

y(t) = g(Vt) + ηt.

We want to infer E(Vt|Y ): optimal estimate given observations. We also want

errorbars: quantify how much we actually know about Vt.

If f(.) and g(.) are linear, and ǫt and ηt are Gaussian, then solution is classical:

Kalman filter. (Many generalizations available; e.g., (Huys and Paninski, 2009).)

Even Kalman case is challenging, since d = dim(~V ) is very large: computation of

Kalman filter requires O(d3) computation per timestep

(Paninski, 2010): methods for Kalman filtering in just O(d) time: take advantage

of sparse tree structure.



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)
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Applications

• Optimal experimental design: which parts of the neuron

should we image? Submodular optimization

(Huggins and Paninski, 2011)

• Estimation of biophysical parameters (e.g., membrane

channel densities, axial resistance, etc.): reduces to a simple

nonnegative regression problem once V (x, t) is known

(Huys et al., 2006)

• Detecting location and weights of synaptic input



Application: synaptic locations/weights



Application: synaptic locations/weights

Cast as sparse regression problem =⇒ fast solution (Pakman et al., 2012)



Example: inferring dendritic synaptic maps

700 timesteps observed; 40 compartments (of > 2000) observed per timestep

Note: random access scanning essential here: results are poor if we observe the

same compartments at each timestep.



Conclusions

• Modern statistical approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between biophysics and statistical

modeling

• Modern optimization methods make computations very

tractable; suitable for closed-loop experiments

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas
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