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The neural code

Input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)

Encoding problem: p(y|x); decoding problem: p(x|y)



Retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008)



Receptive fields tile visual space



Multineuronal point-process model
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,

— Fit by maximum likelihood (concave optimization) (Paninski, 2004)





Network vs. stimulus drive

— Network effects are ≈ 50% as strong as stimulus effects





Network predictability analysis





Model captures spatiotemporal cross-corrs



Maximum a posteriori decoding

arg max~x log P (~x|spikes) = arg max~x log P (spikes|~x) + log P (~x)

— log P (spikes|~x) is concave in ~x: concave optimization again.

(In fact, can be done in linear time.)



Does including correlations improve decoding?

— Including correlations improves decoding accuracy.



How important is timing?

(Ahmadian et al., 2008)



Constructing a metric between spike trains

d(r1, r2) ≡ dx(x1, x2)

Locally, d(r, r + δr) = δrT Grδr: interesting information in Gr.



Effects of jitter on spike trains

Look at degradations as we add Gaussian noise with covariance:

1. C ∝ G−1 (optimal)

2. C ∝ diag(G)−1 (perturb less important spikes more)

3. C ∝ I (simplest)

Non-correlated perturbations (2,3) are about 2.5× more costly.

Can also add/remove spikes:

cost of spike addition/deletion ≈ cost of jittering by 10 ms.



Optimal velocity decoding

How to decode behaviorally-relevant signals, e.g., image

velocity?

If image I is known, use Bayesian estimate (Weiss et al., 2002):

p(v|D, I) ∝ p(v)p(D|v, I)

If image is unknown, we have to integrate out:

p(v|D) ∝ p(v)p(D|v) = p(v)

∫

p(I)p(D|v, I)dI;

p(I) denotes a priori image distribution.

— connections to standard energy models

(Frechette et al., 2005; Lalor et al., 2008)



Optimal velocity decoding

— estimation improves with knowledge of image



Image stabilization is a significant problem

From (Pitkow et al., 2007): neighboring letters on the 20/20 line of the Snellen eye

chart. Trace shows 500 ms of eye movement.



Bayesian methods for image stabilization

Similar marginalization idea as in velocity estimation:

p(I|D) ∝ p(I)p(D|I) = p(I)

∫

p(D|e, I)p(e)de;

e denotes eye jitter path.

true image w/ translations; observed noisy retinal responses; estimated image.
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