Optimal filtering methods for complex biophysical neural data

Liam Paninski

Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/~liam *liam@stat.columbia.edu* September 23, 2007

w/ Q. Huys, J. Vogelstein, and M. Ahrens

The filtering problem

Spatiotemporal imaging data is very exciting, but we have to deal with noise and intermittent observations.

Goals:

- Noise filtering/interpolation of spatiotemporal voltage observations
- Inferring locations of synaptic input on the dendritic tree
- Learning biophysical parameters (membrane leakiness, channel density, etc.) given imaging data
- Inferring spike times from calcium traces
- Inferring synaptic input times from voltage traces

Basic paradigm: the Kalman filter

Variable of interest, x(t), evolves according to a noisy differential equation:

$$dx/dt = f(x) + \epsilon_t.$$

Make noisy observations:

$$y(t) = g(x(t)) + \eta_t.$$

We want to infer E(x(t)|Y): optimal estimate given observations. We also want errorbars: quantify how much we actually know about x(t).

If f(.) and g(.) are linear, and ϵ_t and η_t are Gaussian, then solution is classical: Kalman filter.

Extensions to nonlinear dynamics, non-Gaussian observations: hidden Markov ("state-space") model, particle filtering

Application: incomplete observations of V(t)

- Leaky integrator model: $dV/dt = g_l[V_l - V(t)] + \epsilon_t$

Vector case

Easy extension of Kalman method:

 $d\vec{x}/dt = A\vec{x}(t) + \vec{\epsilon}_t$ $\vec{y}(t) = K\vec{x}(t) + \vec{\eta}_t$

Example:

 $x_i(t) =$ voltage at compartment i

A = dynamics matrix: includes leak terms $(A_{ii} = -g_l)$ and intercompartmental terms $(A_{ij} = 0$ unless compartments are adjacent)

K = observation matrix: in laser-scanning setting, $K = K_t =$ single-node snapshot

(show movie...)

Spatiotemporal voltage filtering

true voltage

Application: detecting synapses on a dendritic branch

Including known terms:

$$d\vec{V}/dt = A\vec{V}(t) + W\vec{U}(t)$$

 $U_j(t) =$ known input terms

Example: U(t) are known presynaptic spike times, and we want to detect which compartments are connected (i.e., infer the weight matrix W).

Detecting synapses

Detecting synapses: spatiotemporal example

Smoothing given nonlinear dynamics

— via particle filtering (Huys and Paninski, 2006)

Subsampling and noise

Estimating model parameters

$$C\frac{dV_i}{dt} = I_i^{\text{channels}} + I_i^{\text{synapses}} + I_i^{\text{intercompartmental}}$$

$$I_{i}^{\text{channels}} = \sum_{c} \bar{g}_{c} g_{c}(t) (E_{c} - V_{i}(t))$$
$$I_{i}^{\text{synapses}} = \sum_{s} (\xi_{s} * k_{s})(t) (E_{s} - V_{i}(t))$$
$$I_{i}^{\text{intercompartmental}} = \sum_{a} g_{a} \Delta V_{a}(t)$$

Key point: if we observe full $V_i(t)$ + cell geometry, channel kinetics known + current noise is log-concave,

then loglikelihood of unknown parameters is concave.

Gaussian noise \implies standard nonnegative regression (albeit high-d).

Estimating channel densities from V(t)

(Huys et al., 2006)

Estimating channel densities from V(t)

Measuring uncertainty in channel densities

Estimating stimulus effects

$$dV/dt = I_{channel} + \vec{k} \cdot \vec{x}(t) + \sigma N_t$$

Estimating non-homogeneous channel densities

$$I_i^{\text{channels}} = \sum_c \bar{g}_c g_c(t) (E_c - V_i(t))$$

Estimating parameters given intermittent, noisy observations

"EM" algorithm: iterate between estimation of $E(V(t)|Y,\theta)$, then fitting model parameters given estimated V(t).

Example: Simulated data: five-compartment V(t), noisy observations

Estimating parameters in the Kalman setting

Estimating parameters for nonlinear dynamics

Estimating synaptic inputs given V(t)

$$V(t + dt) = V(t) + dt \left[g_l(V_l - V(t)) + g_I(t)(V_I - V(t)) + g_E(t)(V_E - V(t)) \right] + \epsilon_t$$
$$g_I(t + dt) = g_I(t) - dt \frac{g_I(t)}{\tau_I} + N_I(t)$$

⁽Huys et al., 2006; Paninski, 2007)

Estimating synaptic inputs given V(t)

Estimating synaptic inputs given V(t)

Inferring spike rates from calcium observations

Inferring spike rates from calcium observations

Including stimulus information improves estimates

(Vogelstein et al., 2007)

Conclusions

Advantages of model-based approach:

- Flexibility (can fit optimal filters directly to noisy data; no need to rely on a single deconvolution filter)
- Direct biophysical interpretability of estimated parameters
- Connections to models of stimulus encoding, decoding (Paninski et al., 2008)
- Direct quantification of uncertainty

Next steps:

- Application to data
- Further relaxation of assumptions

References

- Huys, Q., Ahrens, M., and Paninski, L. (2006). Efficient estimation of detailed single-neuron models. *Journal of Neurophysiology*, 96:872–890.
- Huys, Q. and Paninski, L. (2006). Model-based optimal interpolation and filtering for noisy, intermittent biophysical recordings. CNS*06 Meeting, Edinburgh.
- Paninski, L. (2007). Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods. *Submitted*.
- Paninski, L., Pillow, J., and Lewi, J. (2008). Statistical models for neural encoding, decoding, and optimal stimulus design. In Cisek, P., Drew, T., and Kalaska, J., editors, *Computational Neuroscience: Progress in Brain Research*. Elsevier.
- Vogelstein, J., Zhang, K., Jedynak, B., and Paninski, L. (2007). Inferring the structure of populations of neurons using a sequential Monte Carlo EM algorithm. COSYNE.