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The neural code

Input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)

Encoding problem: p(y|x); decoding problem: p(x|y)



Retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008b)



Receptive fields tile visual space



Multineuronal point-process model
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λi(t) = f

(

bi + ~ki · ~x(t) +
∑

i′,j

hi′,jni′(t − j)

)

,

— GLM; fit by L1-penalized maximum likelihood (concave optimization)

(Paninski, 2004; Truccolo et al., 2005)





Network vs. stimulus drive

— Network effects are ≈ 50% as strong as stimulus effects





Network predictability analysis





Model captures spatiotemporal cross-corrs







Optimal Bayesian decoding

E(~x|spikes) ≈ arg max~x log P (~x|spikes) = arg max~x [log P (spikes|~x) + log P (~x)]

— Computational points:

• log P (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of log P (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2008a).

— Biological point: paying attention to correlations improves decoding accuracy.



Application: how important is timing?

— Fast decoding methods let us look more closely (Ahmadian et al., 2008)



Constructing a metric between spike trains

d(r1, r2) ≡ dx (x̂(r1), x̂(r2))

Locally, d(r, r + δr) = δrT Grδr: interesting information in Gr.



Spike sensitivity is strongly context-dependent

— Reflects nonlinearity of decoder x̂(r): linear decoder is context-independent

— Cost of spike addition/deletion ≈ cost of jittering by 10 ms (Victor, 2000):

natural time scale of spike train.



Application: recurrent network modeling

— Do observed local connectivity rules lead to interesting network dynamics?

What are the implications for retinal information processing? Can we capture

these effects with a reduced dynamical model?

— Mean-field analysis (Toyoizumi et al., 2008)



Application: optimal velocity decoding

How to decode behaviorally-relevant signals, e.g. image velocity?

If image I is known, use Bayesian estimate (Weiss et al., 2002):

p(v|spikes, I) ∝ p(v)p(spikes|v, I)

If image is unknown, we have to integrate out:

p(v|spikes) ∝ p(v)p(spikes|v) = p(v)

∫

p(I)p(spikes|v, I)dI;

p(I) denotes a priori image distribution.

— connections to standard energy models

(Frechette et al., 2005; Lalor et al., 2008)



Optimal velocity decoding

— estimation improves with knowledge of image; can compare

directly to human psychophysics (Frechette et al., 2004)



Application: image stabilization

From (Pitkow et al., 2007): neighboring letters on the 20/20 line of the Snellen eye

chart. Trace shows 500 ms of eye movement.



Bayesian methods for image stabilization

Similar marginalization idea as in velocity estimation:

p(I|spikes) ∝ p(I)p(spikes|I) = p(I)

∫

p(spikes|e, I)p(e)de;

e denotes eye jitter path; integration by particle-filter methods.

true image w/ translations; observed noisy retinal responses; estimated image.



Extension: including common input effects

State-space setting (Kulkarni and Paninski, 2007; Khuc-Trong and Rieke, 2008;

Wu et al., 2008)



Direct state-space optimization methods

λi(t) = f

2

4bi + ~ki · ~x(t) +
X

i′,j

hi′,jni′(t − j) + qi(t)

3

5

= f [Xtθ + qi(t)]

— Q is a very high-dimensional latent (unobserved) “common input” term.

Taken to be a Gaussian process here with autocorrelation time ≈ 5 ms

— Parameter θ is high-d; standard Expectation-Maximization approach is very

slow. Instead, optimize Laplace-approximated marginal likelihood directly:

log p(spikes|θ) = log

Z

p(Q|θ)p(spikes|θ, Q)dQ

≈ log p(Q̂θ|θ) + log p(spikes|Q̂θ) −
1

2
log |JQ̂θ

|

Q̂θ = arg max
Q

{log p(Q|θ) + log p(spikes|Q)}

— all terms can be computed in linear time via block-tridiagonal matrix methods

(Koyama et al., 2008). Number of applications (Paninski et al., 2008).



Common input model predicts x-corrs well

(analysis of full population is in progress...)



Inferred common input effects are strong
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— Much more consistent with biophysical data (Khuc-Trong and Rieke, 2008).

— Next steps: what is impact on statistical properties of the model? Can

inferred common inputs be mapped directly onto biophysical currents?



Conclusions

• Standard statistical models (GLM) provide flexible, powerful

tools for answering key questions in neuroscience

• Close relationships between encoding, decoding, and

experimental design (Paninski et al., 2007)

• Log-concavity and suitable matrix structure makes

computations very tractable

• Many opportunities for machine learning / fast

computational techniques in neuroscience
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