Statistical methods for understanding neural codes: Multineuronal spike coding in primate retina

Liam Paninski

Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/~liam *liam@stat.columbia.edu* April 19, 2007

— with J. Pillow (Gatsby), E. Simoncelli (NYU), E.J. Chichilnisky, V. Uzzell, J. Shlens (Salk), T. Toyoizumi (Columbia).

Support: NIH CRCNS award, Sloan Research Fellowship.

The neural code

Input-output relationship between

- External observables x (sensory stimuli, motor responses...)
- Neural variables y (spike trains, population activity...)

Probabilistic formulation: p(y|x)

Basic goal

...learning the neural code. Fundamental question: how to estimate p(y|x) from experimental data?

General problem is too hard — not enough data, too many inputs x and spike trains y

Avoiding the curse of insufficient data

Many approaches to make problem tractable:

1: Estimate some functional f(p) instead

e.g., information-theoretic quantities (Nemenman et al., 2002; Paninski, 2003)

2: Select stimuli as efficiently as possible (Foldiak, 2001; Machens, 2002; Paninski, 2005; Lewi et al., 2006)

3: Fit a model with small number of parameters

Neural encoding models

"Encoding model": $p_{\theta}(y|x)$.

— Fit parameter θ instead of full p(y|x)

Main theme: want model to be flexible but not overly so Flexibility vs. "fittability"

Multiparameter HH-type model

Regional Conductances (mS/cm²)

Current	Dendrites	Soma	AH	NR	Axon	
I _{Ca}	2.0	1.5	1.5	31-54		
IK.Ca	0.001	0.065	0.065	0.065	0.065	
INA	25	80	100-150†	100	40-70±	
I _K	12	18	18	18	12-18‡	
I_	36	54	54	54	_	
Leak (Real)	0.008	0.008	0.008	0.008	0.008	
(EC2.5)	0.005	0.005	0.005	0.005	0.005	
	Current I_{Ca} $I_{K,Ca}$ I_{Na} I_{K} I_{A} Leak (Real) (EC2.5)	Current Dendrites I _{ca} 2.0 I _{K,Ca} 0.001 I _{Na} 25 I _K 12 I _A 36 Leak (Real) 0.005	$\begin{tabular}{ c c c c c } \hline Current & Dendrites & Soma \\ \hline $I_{\rm Ca}$ & 2.0 & 1.5 \\ $I_{\rm K,Ca}$ & 0.001 & 0.065 \\ \hline $I_{\rm Na}$ & 25 & 80 \\ $I_{\rm K}$ & 12 & 18 \\ $I_{\rm A}$ & 36 & 54 \\ $Leak$ (Real)$ & 0.008 & 0.008 \\ $(EC2.5)$ & 0.005 & 0.005 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

— highly biophysically plausible, flexible

— **but** very difficult to estimate parameters given spike times alone (figure adapted from (Fohlmeister and Miller, 1997))

Cascade ("LNP") model

— easy to estimate via correlation-based methods (Simoncelli et al., 2004)

— **but** not biophysically plausible (fails to capture spike timing details: refractoriness, burstiness, adaptation, etc.)

Two key ideas

- 1. Use likelihood-based methods for fitting.
 - well-justified statistically

— easy to incorporate prior knowledge, explicit noise models, etc.

2. Use models that are easy to fit via maximum likelihood
— concave (downward-curving) functions have no non-global local maxima ⇒ concave functions are easy to maximize by gradient ascent.

Recurring theme: find flexible models whose loglikelihoods are guaranteed to be concave.

Filtered integrate-and-fire model

$$dV(t) = \left(-g(t)V(t) + I_{DC} + \vec{k} \cdot \vec{x}(t) + \sum_{j=-\infty}^{0} h(t-t_j)\right) dt + \sigma dN_t;$$

(Gerstner and Kistler, 2002; Paninski et al., 2004)

Model flexibility: Adaptation

The estimation problem

Learn the model parameters:

 \vec{K} = stimulus filter g = leak conductance σ^2 = noise variance \vec{h} = response current

From: stimulus train x(t)spike times t_i

(Paninski et al., 2004)

First passage time likelihood

 $P(\text{spike at } t_i) = \text{fraction of paths crossing threshold for first time at } t_i$

(computed numerically via Fokker-Planck or integral equation methods)

Likelihood function

Computing Likelihood

Diffusion Equation:

$$\frac{\partial P(V,t)}{\partial t} = \frac{\sigma^2}{2} \frac{\partial^2 P}{\partial V^2} + g \frac{\partial [(V-V_0)P]}{\partial V},$$

- linear dynamics
- additive Gaussian noise

ISIs are conditionally independent \implies likelihood is product over ISIs

Maximizing likelihood

Maximization seems difficult, even intractable:

- high-dimensional parameter space
- likelihood is a complex nonlinear function of parameters

Main result: The loglikelihood is concave in the parameters, no matter what data $\{\vec{x}(t), t_i\}$ are observed.

- \implies no non-global local maxima
- \implies maximization easy by ascent techniques.

Proof of log-concavity theorem

Based on probability integral representation of likelihood:

$$L(\theta) = \int 1(\mathbf{V} \in C) dG_{\vec{x},\theta}(\mathbf{V})$$

 $G_{\vec{x},\theta}(\mathbf{V}) = \text{OU-measure on voltage paths } \mathbf{V}$ C = set of voltage paths V(t) consistent with spike data:

$$V(t) \leq V_{th}; V(t_i) = V_{th}; V(t_i^+) = V_{reset}$$

Now use fact that marginalizing preserves log-concavity (Prekopa, 1973): if $f(\vec{x}, \vec{y})$ is jointly l.c., then so is

$$f_0(\vec{x}) \equiv \int f(\vec{x}, \vec{y}) d\vec{y}.$$

Application: retinal ganglion cells

Preparation: dissociated salamander and macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random "flicker" visual stimuli (Chander and Chichilnisky, 2001)

Spike timing precision in retina RGC のなるないない LNP 12 IF 0.5 0.75 0.07 0.25 0.17 0.22 0.26 0 1 RGC LNP rate (sp/sec) 200 IF 0 1.5 variance (sp²/bin) 1 0.5 0 0.25 0.5 0.75 0.64 0.85 0.9 0 0.6

(Pillow et al., 2005b)

Linking spike reliability and subthreshold noise

(Pillow et al., 2005b)

Likelihood-based discrimination

Given spike data, optimal decoder chooses stimulus \vec{x} according to likelihood: $p(spikes|\vec{x}_1)$ vs. $p(spikes|\vec{x}_2)$.

Using accurate model is essential (Pillow et al., 2005b)

Generalization: population responses

0

-100

time (ms)

-200

coupling filters

Nearest-neighbor connectivity

Fitting coupling terms exposes smaller receptive fields

Spike Train Prediction

Network predictability analysis

• fix all other neurons for a single trial

draw single-trial predictions of this cell's spike train

Network vs. stimulus drive

Triplet correlations

Triplet correlations

Model-based optimal decoding

— Use Bayes' rule to compute $\vec{x}_{MAP} = \arg \max_{\vec{x}} \log P(\vec{x}|spikes) = \arg \max_{\vec{x}} \log P(spikes|\vec{x}) + \log P(\vec{x}).$

Again, correct model $P(spikes | \vec{x})$ is essential (Pillow and Paninski, 2007).

Coupled model decodes more accurately

Next: Large-scale network modeling

— Do observed local connectivity rules lead to interesting network dynamics? What are the implications for retinal information processing?

Mean-field model

$$\lambda_i(t) = f\left[\vec{k}_i^T \vec{x}(t) + b_i + \sum_{i',j} h_{i',i}(t - t_{i',j})\right]$$
$$\approx f\left[\vec{k}_i^T \vec{x}(t) + b_i + \sum_{i'} h_{i',i}(t) * \lambda_{i'}(t)\right]$$

References

- Chander, D. and Chichilnisky, E. (2001). Adaptation to temporal contrast in primate and salamander retina. Journal of Neuroscience, 21:9904-16.
- Fohlmeister, J. and Miller, R. (1997). Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells. *Journal of Neurophysiology*, 78:1948–1964.
- Foldiak, P. (2001). Stimulus optimisation in primary visual cortex. Neurocomputing, 38-40:1217-1222.
- Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press.
- Lewi, J., Butera, R., and Paninski, L. (2006). Real-time adaptive information-theoretic optimization of neurophysiological experiments. *NIPS*.
- Machens, C. (2002). Adaptive sampling by information maximization. *Physical Review Letters*, 88:228104-228107.
- Nemenman, I., Shafee, F., and Bialek, W. (2002). Entropy and inference, revisited. NIPS, 14.
- Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15:1191-1253.
- Paninski, L. (2005). Asymptotic theory of information-theoretic experimental design. *Neural Computation*, 17:1480–1507.
- Paninski, L., Pillow, J., and Simoncelli, E. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. *Neural Computation*, 16:2533-2561.
- Pillow, J. and Paninski, L. (2007). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. *Submitted*.
- Pillow, J., Paninski, L., Shlens, J., Simoncelli, E., and Chichilnisky, E. (2005a). Modeling multi-neuronal responses in primate retinal ganglion cells. *Comp. Sys. Neur.* '05.
- Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., and Chichilnisky, E. (2005b). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. *Journal of Neuroscience*, 25:11003-11013.
- Prekopa, A. (1973). On logarithmic concave measures and functions. Acad Sci. Math., 34:335-343.
- Simoncelli, E., Paninski, L., Pillow, J., and Schwartz, O. (2004). Characterization of neural responses with stochastic stimuli. In *The Cognitive Neurosciences*. MIT Press, 3rd edition.