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The neural code

Input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)

Probabilistic formulation: p(y|x)



Basic goal

...learning the neural code.

Fundamental question: how to estimate p(y|x) from

experimental data?

General problem is too hard — not enough data, too many

inputs x and spike trains y



Avoiding the curse of insufficient data

Many approaches to make problem tractable:

1: Estimate some functional f(p) instead

e.g., information-theoretic quantities (Nemenman et al., 2002;

Paninski, 2003)

2: Select stimuli as efficiently as possible (Foldiak, 2001;

Machens, 2002; Paninski, 2005; Lewi et al., 2006)

3: Fit a model with small number of parameters



Neural encoding models

“Encoding model”: pθ(y|x).

— Fit parameter θ instead of full p(y|x)

Main theme: want model to be flexible but not overly so

Flexibility vs. “fittability”



Multiparameter HH-type model

— highly biophysically plausible, flexible

— but very difficult to estimate parameters given spike times alone
(figure adapted from (Fohlmeister and Miller, 1997))



Cascade (“LNP”) model

— easy to estimate via correlation-based methods

(Simoncelli et al., 2004)

— but not biophysically plausible (fails to capture spike timing

details: refractoriness, burstiness, adaptation, etc.)



Two key ideas

1. Use likelihood-based methods for fitting.

— well-justified statistically

— easy to incorporate prior knowledge, explicit noise

models, etc.

2. Use models that are easy to fit via maximum likelihood

— concave (downward-curving) functions have no

non-global local maxima =⇒ concave functions are easy to

maximize by gradient ascent.

Recurring theme: find flexible models whose loglikelihoods are

guaranteed to be concave.



Filtered integrate-and-fire model

dV (t) =

(

−g(t)V (t) + IDC + ~k · ~x(t) +
0
∑

j=−∞

h(t − tj)

)

dt+σdNt;

(Gerstner and Kistler, 2002; Paninski et al., 2004)



Model flexibility: Adaptation



The estimation problem

(Paninski et al., 2004)



First passage time likelihood

P (spike at ti) = fraction of paths crossing threshold for first time at ti

(computed numerically via Fokker-Planck or integral equation methods)







Maximizing likelihood

Maximization seems difficult, even intractable:

— high-dimensional parameter space

— likelihood is a complex nonlinear function of parameters

Main result: The loglikelihood is concave in the parameters,

no matter what data {~x(t), ti} are observed.

=⇒ no non-global local maxima

=⇒ maximization easy by ascent techniques.



Proof of log-concavity theorem

Based on probability integral representation of likelihood:

L(θ) =

∫

1(V ∈ C)dG~x,θ(V)

G~x,θ(V) = OU-measure on voltage paths V

C = set of voltage paths V (t) consistent with spike data:

V (t) ≤ Vth; V (ti) = Vth; V (t+i ) = Vreset

Now use fact that marginalizing preserves log-concavity

(Prekopa, 1973): if f(~x, ~y) is jointly l.c., then so is

f0(~x) ≡

∫

f(~x, ~y)d~y.



Application: retinal ganglion cells
Preparation: dissociated salamander and macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random “flicker” visual stimuli (Chander and Chichilnisky, 2001)



Spike timing precision in retina
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Linking spike reliability and

subthreshold noise

(Pillow et al., 2005b)



Likelihood-based discrimination

Given spike data, optimal decoder chooses stimulus ~x according

to likelihood: p(spikes|~x1) vs. p(spikes|~x2).

Using accurate model is essential (Pillow et al., 2005b)



Generalization: population responses

(Pillow et al., 2005a)







Nearest-neighbor connectivity



Fitting coupling terms exposes smaller

receptive fields





Network predictability analysis





Network vs. stimulus drive



















Model-based optimal decoding

— Use Bayes’ rule to compute ~xMAP =

arg max~x log P (~x|spikes) = arg max~x log P (spikes|~x) + log P (~x).

Again, correct model P (spikes|~x) is essential (Pillow and Paninski, 2007).



Coupled model decodes more accurately



Next: Large-scale network modeling

— Do observed local connectivity rules lead to interesting

network dynamics? What are the implications for retinal

information processing?



Mean-field model

λi(t) = f
[

~kT
i ~x(t) + bi +

∑

i′,j

hi′,i(t − ti′,j)
]

≈ f
[

~kT
i ~x(t) + bi +

∑

i′

hi′,i(t) ∗ λi′(t)
]
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