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Some exciting open challenges for

statistical neuroscience
• inferring biophysical neuronal properties from noisy recordings

• reconstructing the full dendritic spatiotemporal voltage from noisy,

subsampled observations

• estimating subthreshold voltage given superthreshold spike trains

• extracting spike timing from slow, noisy calcium imaging data

• reconstructing presynaptic conductance from postsynaptic voltage

recordings

• inferring connectivity from large populations of spike trains

• decoding behaviorally-relevant information from spike trains

• optimal control of neural spike timing

— to solve these, we need to combine the two classical branches of

computational neuroscience: dynamical systems and neural coding



An inverse problem: inferring cable equation

parameters

Can we recover detailed biophysical properties?

• Active: membrane channel densities

• Passive: axial resistances, “leakiness” of membranes

• Dynamic: spatiotemporal synaptic input



Estimating biophysical parameters from V (x, t)

Key point: if we observe full Vi(t) + cell geometry, channel kinetics known

+ current noise is Gaussian,

then estimating unknown parameters is standard convex nonnegative

regression problem (albeit high-d): minθ≥0 ||Y − Xθ||2.



Estimating channel densities from V (t)

(Huys et al., 2006)



Estimating channel densities from V (t)
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Estimating non-homogeneous channel

densities



The filtering problem

Spatiotemporal imaging data is very exciting, but we have to

deal with noise and intermittent observations.

(Djurisic et al., 2004; Knopfel et al., 2006)



Basic paradigm: the Kalman filter

Variable of interest, qt, evolves according to a noisy differential

equation (Markov process):

dq/dt = f(qt) + ǫt.

Make noisy observations:

yt = g(qt) + ηt.

We want to infer E(qt|Y ): optimal estimate given observations.

We also want errorbars: V ar(qt|Y ) quantifies how much we

actually know about qt.

If f(.) and g(.) are linear, and ǫt and ηt are Gaussian, then

solution is classical: Kalman filter.



The forward recursion

We want p(qt|Y1:t) ∝ p(qt, Y1:t). We know that

p(Q, Y ) = p(Q)p(Y |Q) = p(q1)
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To compute p(qt, Y1:t) recursively, just write out marginal and pull out constants
from the integrals:
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p(q3|q2)p(y2|q2)
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So, just recurse

p(qt, Y1:t) = p(yt|qt)

Z

qt−1

p(qt|qt−1)p(qt−1, Y1:t−1).

Linear-Gaussian case: requires O(dim(q)3T ) time; just matrix algebra.

Approximate solutions in more general case, e.g., Gaussian approximations

(Brown et al., 1998), or Monte Carlo (“particle filtering”).

Key point: efficient recursive computations =⇒ O(T ) time.



Application: incomplete observations of V (t)

— Leaky integrator model: dV/dt = gl[Vl − V (t)] + ǫt
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Multicompartmental case

Easy extension of Kalman method:

d~V /dt = A~V (t) + ~ǫt

~y(t) = B~V (t) + ~ηt

Example:

Vi(t) = voltage at compartment i

A = dynamics matrix (cable equation): includes leak

(Aii = −gl) and inter-compartmental terms (Aij = 0 for

non-adjacent compartments)

B = observation matrix



Example: laser scanning

B = Bt = single-node snapshot

(Loading hp07-KalmanSmootherMovie.mov)

(Huys and Paninski, 2009)


hp07-KalmanSmootherMovie.mov
Media File (video/quicktime)



Example: multiple observations

(Loading low-rank-speckle.mp4)

— special methods required to deal with large dendritic trees:

dim(qt) is very large (Paninski, 2009a).


Convertified by iSquint - http://www.isquint.org

low_rank_speckle.mp4
Media File (video/mp4)



Example: summed observations

(Loading low-rank-horiz.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_horiz.mp4
Media File (video/mp4)



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) + W ~U(t) + ~ǫ(t)

Uj(t) = known input terms

Example: U(t) are known presynaptic spike times, and we want

to detect which compartments are connected (i.e., infer the

weight matrix W ).



Detecting synapses
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(Paninski and Ferreira, 2008; Paninski et al., 2009)



Another application: neural prosthetics

qt: hand position (red square); E(qt|Y1:t): green circle

yt: vector of observed spike counts at time t from multiple

simultaneously recorded motor cortical neurons

(Loading Kalman-neural-decoding.mp4)

(Wu et al., 2006; Wu et al., 2009)


Convertified by iSquint - http://www.isquint.org

Kalman_neural_decoding.mp4
Media File (video/mp4)



Another look: computing the MAP path
We often want to compute the MAP estimate

Q̂ = arg max
Q

p(Q|Y ).

In standard Kalman setting, forward-backward recursions also compute MAP

(because E(Q|Y ) and Q̂ coincide if p(Q|Y ) is Gaussian).

More generally, write out the posterior:

log p(Q|Y ) = log p(Q) + log p(Y |Q) + const.

=
X

t

log p(qt+1|qt) +
X

t

log p(yt|qt) + const.

Two basic observations:

• If log p(qt+1|qt) and log p(yt|qt) are concave, then so is log p(Q|Y ).

• Hessian H of log p(Q|Y ) is block-tridiagonal: p(yt|qt) contributes a

block-diag term, and log p(qt+1|qt) contributes a block-tridiag term.

Now recall Newton’s method: iteratively solve HQdir = ∇. Solving tridiagonal

systems requires O(T ) time.

— computing MAP by Newton’s method requires O(T ) time, even in highly

non-Gaussian cases.



Constrained optimization

In many cases we need to impose constraints on qt (e.g., nonnegativity). Easy to

incorporate here, via interior-point (barrier) methods:

arg max
Q∈C

log p(Q|Y ) = lim
ǫց0

arg max
Q

(

log p(Q|Y ) + ǫ
X

t

f(qt)

)

= lim
ǫց0

arg max
Q

(

X

t

log p(qt+1|qt) + log p(yt|qt) + ǫf(qt)

)

;

f(.) is concave and approaching −∞ near boundary of constraint set C. The

Hessian remains block-tridiagonal and negative semidefinite for all ǫ > 0, so

optimization still requires just O(T ) time.



Example: computing the MAP subthreshold

voltage given superthreshold spikes

Leaky, noisy integrate-and-fire model:

Vt+dt = Vt +

„

−Vt

τ
+ It

«

dt + σ
√

dtǫt, ǫt ∼ N (0, 1)

Observations: yt = 0 (no spike) if Vt < Vth; yt = 1 if Vt = Vth

Hard threshold =⇒ p(V |Y ) is very non-Gaussian: “corners” at Vt = Vth.

(Paninski, 2006)



Example: inferring presynaptic input

gj(t + dt) = gj(t) − dtgj(t)/τj + Nj(t), Nj(t) ≥ 0

yt = It =
X

j

gj(t)(Vj − Vt) + ǫt

Hidden state qt: vector of conductances gt (Paninski, 2009b)
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Example: inferring spike times from slow,

noisy calcium data

Ct+dt = Ct − dtCt/τ + Nt; Nt > 0; yt = Ct + ǫt

— nonnegative deconvolution is a recurring problem in signal processing

(Vogelstein et al., 2008a).



Particle filter can extract spikes from

saturated recordings

(Vogelstein et al., 2008b)



Next challenge: circuit inference



Part 2: modeling spike train data
Preparation: dissociated macaque retina (Chichilnisky lab)

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008)



Receptive fields tile visual space



Multineuronal point-process model
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Point-process likelihood

λt = f(Xtθ)

log p(nt|Xt, θ) = log Poiss(nt; λtdt) = −f(Xtθ)dt+nt log f(Xtθ)+const.

log p({nt}|X, θ) =
∑

t

log p(nt|Xt, θ).

Key points:

• f convex and log-concave =⇒ log-likelihood concave in θ.

Easy to optimize, so estimating θ is very tractable

(Paninski, 2004; Truccolo et al., 2005).

• Easy to include priors p(θ) if log p(θ) is concave: useful for

smoothing/sparsening estimates



— θstim is well-approximated by a low-rank matrix (center-surround)





Nearest-neighbor connectivity
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Network vs. stimulus drive

— Network effects are ≈ 50% as strong as stimulus effects





Model captures spatiotemporal cross-corrs





Optimal Bayesian decoding

E(~x|spikes) ≈ arg max~x log P (~x|spikes) = arg max~x [log P (spikes|~x) + log P (~x)]

— Computational points:

• log P (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of log P (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2009).

— Biological point: paying attention to correlations improves decoding accuracy.



Application: how important is timing?

— Fast decoding methods let us look more closely (Ahmadian et al., 2009)



Constructing a metric between spike trains

d(r1, r2) ≡ dx (x̂(r1), x̂(r2))

Locally, d(r, r + δr) = δrT Grδr: interesting information in Gr.



Application: recurrent network modeling

— Do observed local connectivity rules lead to interesting network dynamics?

What are the implications for retinal information processing? Can we capture

these effects with a reduced dynamical model?

— Mean-field analysis (Toyoizumi et al., 2009)



Last example: optimal control of spike timing

How can we make a neuron exactly fire when we want it to fire?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(Vt + ht)

Vt+dt = Vt + dt (−gVt + aIt) +
√

dtσǫt, ǫt ∼ N (0, 1).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It

+ Hessian is tridiagonal =⇒ O(T ) optimization.



Optimal electrical control of spike timing
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Optical conductance-based control of spiking
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