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The neural code

Basic goal: infer input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)



Several levels of neural data analysis

• “Subcellular” level: measurements of intracellular voltage or

ionic concentrations (intracellular “patch” electrodes,

two-photon imaging)

• “Circuit” level: electrical activity of single neurons or small

groups of isolated neurons (multi-electrode recordings,

calcium-sensitive microscopy)

• “Systems” level: blood flow or other indirect measurements

of electrical activity in coarsely-defined brain areas (fMRI,

EEG, MEG...)



Three challenges

1. Reconstructing the full spatiotemporal voltage on a

dendritic tree given noisy, intermittently-sampled subcellular

measurements

2. Decoding behaviorally-relevant information from multiple

spike trains

3. Inferring connectivity from large populations of

noisily-observed spike trains



The filtering problem

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.

(Djurisic et al., 2004; Knopfel et al., 2006)



Basic paradigm: compartmental models

• write neuronal dynamics in terms of equivalent nonlinear, time-varying

RC circuits (Koch, 1999)

• leads to a coupled system of stochastic differential equations



Inference of spatiotemporal neuronal state

given noisy observations

State-space approach: qt = state of neuron at time t.

We want p(qt|Y1:t) ∝ p(qt, Y1:t). Markov assumption:

p(Q, Y ) = p(Q)p(Y |Q) = p(q1)
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To compute p(qt, Y1:t), just recurse

p(qt, Y1:t) = p(yt|qt)

Z

qt−1

p(qt|qt−1)p(qt−1, Y1:t−1)dqt−1.

Linear-Gaussian case: requires O(dim(q)3T ) time; in principle, just matrix

algebra (Kalman filter). Approximate solutions in more general case via

sequential Monte Carlo (Huys and Paninski, 2009).

Major challenge: dim(q) can be ≈ 104 or greater.



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR

observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can

approximate Kalman covariance Ct = cov(qt|Y1:t) as C0 + UtDtU
T

t
, with

C0 = limt→∞ cov(qt).

C0 is the solution to a Lyapunov equation. It turns out that we can solve

linear equations involving C0 in O(dim(q)) time via Gaussian belief

propagation (Shental et al., 2008), using the fact that the dendrite is a tree.

The necessary recursions here — i.e., updating Ut, Dt and the Kalman

mean E(qt|Y1:t) — involve linear manipulations of C0, using

Ct = [(ACt−1A
T + Q)−1 + Bt]
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T

t
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)AT + Q]−1 + Bt

)

−1

,

and can be done in O(dim(q)) time (Paninski, 2009).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_speckle.mp4
Media File (video/mp4)



Example: summed observations

(Loading low-rank-horiz.mp4)
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Open challenges

• Application to real data

• Extension to strongly nonlinear case

• Other (non-neural) applications?



Part 2: optimal decoding of spike train data

Preparation: macaque retina in vitro (Litke et al., 2004)

— extracellularly-recorded responses of populations of ganglion cells

Full control over input; complete observation of output



Receptive fields tile visual space



Multineuronal point-process GLM
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Fit by L1-penalized maximum likelihood (parallel, concave optimization)

(Brillinger, 1988; Paninski et al., 2007; Pillow et al., 2008)



Model captures spike timing precision
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Model captures cross-correlations



MAP stimulus decoding

It is reasonable to estimate the movie X that led to a response Y via the MAP

X̂ = arg max
X

p(X|Y ).

(Note that X is very high-dimensional!) For this model, we have:

log p(X|Y ) = log p(X) + log p(Y |X) + const.

= log p(X) +
X

t

log p(yt|X, Y...,t−1) + const.

Two basic observations:

• If log p(X) is concave, then so is log p(X|Y ), since each log p(yt|X, Y...,t−1) is.

• Hessian H of log p(Y |X) w.r.t. X is banded: each p(yt|X, Y...,t−1) depends on

X locally in time, and therefore contributes a banded term.

Newton’s method iteratively solves HQdir = ∇. Solving banded systems requires

O(T ) time, so computing MAP requires O(T ) time if log-prior is concave with a

banded Hessian (Fahrmeir and Kaufmann, 1991;

Davis and Rodriguez-Yam, 2005; Jungbacker and Koopman, 2007).

— similar speedups available in constrained cases (Paninski et al., 2009), and in

MCMC setting (e.g., fast hybrid Monte Carlo methods (Ahmadian et al., 2009)).



Application: how important is timing?

— Fast decoding methods let us look more closely (Ahmadian et al., 2009)



Constructing a metric between spike trains

d(r1, r2) ≡ dx (x̂(r1), x̂(r2))

Locally, d(r, r + δr) = δrT Grδr: interesting information in Gr.



Real-time application: neural prosthetics

(Loading decoding.mp4)

(Donoghue, 2002; Wu et al., 2006; Wu et al., 2009)
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Part 3: circuit inference



Challenge: slow, noisy calcium data

First-order model:

Ct+dt = Ct − dtCt/τ + Nt; Nt > 0; yt = Ct + ǫt

— τ ≈ 100 ms; nonnegative deconvolution problem. Can be solved by O(T )

relaxed constrained optimization methods (Vogelstein et al., 2008) or sequential

Monte Carlo (Vogelstein et al., 2009).



Particle filter can extract spikes from

saturated recordings

— saturation model: yt = g(Ct) + ǫt (Vogelstein et al., 2009)



Monte Carlo EM approach

Given the spike times in the network, L1-penalized likelihood

optimization is easy. But we only have noisy calcium

observations Y ; true spike times are hidden variables. Thus an

EM approach is natural.

• E step: sample spike trains Z from p(Z|Y, θ)

• M step: given sampled spike trains, perform L1-penalized

likelihood optimization to update parameters θ.

E step is hard part here. Use the fact that neurons interact

fairly weakly; thus we need to sample from a collection of

weakly-interacting Markov chains. Efficient

Metropolis-within-blockwise-Gibbs forward-backward methods

(Neal et al., 2003).



Simulated circuit inference

Good news: connections are inferred with the correct sign. But process is slow;

improved sampling methods would have a major impact.



Optimal control of spike timing

Optimal experimental design and neural prosthetics applications

require us to perturb the network at will. How can we make a

neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(~k ∗ It + ht).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It

+ Hessian is banded =⇒ O(T ) optimization.



Optimal electrical control of spike timing
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Optical conductance-based control of spiking
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Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between encoding, decoding, and

experimental design (Paninski et al., 2007)

• Log-concavity, banded matrix methods make computations

very tractable

• Experimental methods progressing rapidly; many new

challenges and opportunities for applications of statistical

ideas
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