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A golden age of statistical neuroscience

Some notable recent developments:

• machine learning / statistics / optimization methods for

extracting information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing)

• optical and optogenetic methods for recording from and

perturbing neuronal populations, at multiple scales

• large-scale, high-density multielectrode recordings

• growing acceptance that many fundamental neuroscience

questions are in fact statistics questions in disguise



A few grand challenges

• Optimal decoding and dimensionality reduction of

large-scale multineuronal point process / count data

• Network inference from multineuronal spike train data

• Optimal control of large networks

• Hierarchical nonlinear models for input-output relationships

in neuronal networks

• Robust, expressive brain-machine interfaces; brain reading

and writing

• Understanding dendritic computation and

location-dependent synaptic plasticity via optical imaging

(statistical spatiotemporal signal processing on trees)
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Circuit inference via optical methods



Aim 1: Model-based estimation of spike rates

Note: each component here can be generalized easily.



Fast maximum a posteriori (MAP) estimation

Recipe: biophysical model, then likelihood, then computation.

Start by writing out the posterior:

log p(C|F ) = log p(C) + log p(F |C) + const.

=
∑
t

log p(Ct+1|Ct) +
∑
t

log p(Ft|Ct) + const.

Three basic observations:

• If log p(Ct+1|Ct) and log p(Ft|Ct) are concave, then so is log p(C|F ).

• Hessian H of log p(C|F ) is tridiagonal: log p(Ft|Ct) contributes a diag term,

and log p(Ct+1|Ct) contributes a tridiag term (Paninski et al., 2010).

• C is a linear function of n.

Newton’s method: iteratively solve HCdir = ∇. Tridiagonal solver requires O(T )

time. Can include nonneg constraint nt ≥ 0 via log-barrier (Koyama and

Paninski, 2010) — real-time deconvolution (Vogelstein et al., 2010).

More recently: constrained formulation that eliminates the need to estimate the

firing rate hyperparameter (Pnevmatikakis et al 2013).



Markov chain Monte Carlo sampling

— Pnevmatikakis et al (2014)



Multineuronal case: spatiotemporal demixing

Compressed sensing imaging
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Pnevmatikakis et al (2013)Model:

Y = C + ε

C(x, t) =

r∑
i=1

si(x)fi(t)

fi(t+ dt) =

(
1 −

dt

τi

)
fi(t) + ni(t)

Goal: infer low-rank matrix C from noisy Y . Rank r = number of visible neurons

Additional structure: jumps in fi(t) are non-negative

Locally rank-penalized convex optimization with nonnegativity constraints to infer C,

followed by iterative matrix factorization under nonnegativity constraints to infer

si(x), fi(t) (Pnevmatikakis et al, 2013). Examples: Machado, Lacefield, Kira, Yuanjun



Compressed sensing imaging
Idea: instead of raster scans, take randomized projections in each frame.

(from Studer et al, 2011)

Estimating C given randomized projections Y can be cast as a similar convex

optimization.



Compressed sensing imaging
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2 measurements per timestep (30x undersampling); Pnevmatikakis et al (2013)
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Compressed sensing imaging
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Compressed real data
N

eu
ro

n 
id

True (noisy) traces

5

10

15

20

Recovered traces

5

10

15

20

Neuron 6

100 200 300 400 500 600 700 800 900

Neuron 11

Timestep
 

 
Original
Denoised

∼ 2x undersampling; Pnevmatikakis et al (2013). superposition movie



Phase transitions in decoding accuracy

New tool in compressed sensing theory: “statistical dimension” (Amelunxen,

Lotz, McCoy, Tropp ’13).

Interesting feature of this problem: phase transition depends on pattern of spikes,

not just sparsity (as in standard LASSO problem).



Aim 2: estimating network connectivity

Model:

ni,t ∼ Poiss(λi,t), λi,t = exp(bi +Wint−1 + stim.)

Coupled generalized linear model structure; concave loglikelihoods, optimization

is straightforward (Paninski, 2004; Pillow et al., 2008). Easy to incorporate prior

information about sparsity of connections, cell types, etc.



The dreaded common input problem

How to distinguish direct connectivity from common input?

(from Nykamp ‘07)

Previous work (e.g., Vidne et al, 2012) modeled common input terms

explicitly as latent variables; works well given enough a priori information,

but not a general solution.



A “shotgun sampling” approach

We can only observe K cells at a time.

Idea: don’t observe the same subset of K cells throughout the

experiment.

Instead, observe as many different K-subsets as possible.

Hard with multi-electrode arrays; easy with imaging approaches.

Statistics problem: how to patch together all of the estimated

subnetworks?

Want to integrate over {ni(t)}, but scaling to large networks is

a big challenge.



Approximate sufficient statistics in large

Poisson regression network models

Model:

ni,t ∼ Poiss(λi,t), λi,t = exp(bi +Wint−1)

LLi =
∑
t

ni,t(bi +Wint−1)−
∑
t

exp(bi +Wint−1)

Idea: central limit theorem approximation for second term:

Wint−1 is a big sum.

Dramatic simplification: approximate log-likelihood is

quadratic! (Ramirez and Paninski ’13)

Approximate sufficient statistics: E(nt), E(ntn
T
t ), E(ntn

T
t−1).

Can be estimated from just the observed data, or can be

augmented with imputed unobserved {ni,t}. Can further

regularize E(ntn
T
t ) via sparse-inverse penalty.



Filling in missing spikes



Simulated “shotgun” results
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Incorporating cell type structure
true per−cluster means
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Aim 3: Optimal control of spike timing

To test our results, we want to perturb the network at will.

How can we make a neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple integrate-and-soft-threshold model:

λt = f(Vt + ht)

Vt+dt = Vt + dt (−gVt + aIt) +
√
dtσεt, εt ∼ N (0, 1).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It
+ Hessian is tridiagonal =⇒ O(T ) optimization.

— again, can be done in real time (Ahmadian et al., 2011)...

though some open challenges when It is high-d, spatiotemporal



Applications

- sensory prosthetics, e.g. retinal prosthetics

- fine-grained behavioral control

- online adaptive experimental design: choose stimuli which provide as much

information about network as possible. Major problem here: updating sparse

posteriors. Can speed inference significantly (Shababo, Paige et al, ‘13)



Robust point-process dimensionality reduction

Low-dimensional latent variable zt

Fixed matrix B mapping zt up to the higher-dimensional neural

rate space

Simplest firing rate model:

ni(t) ∼ Poiss(λi(t))

log λi(t) = Bizt = ri(t)

(can be generalized easily to include stimulus terms, spike

history effects, etc.)

How to estimate low-d structure B without making a lot of

assumptions about the dynamics (e.g., linear, Gaussian) of zt?

Generalization of PCA: max. likelihood of spike data

n = {ni(t)} as function of R = {ri(t)}, while minimizing rank of

R: rank(R) ≤ dim(z). Nuclear norm =⇒ convex problem.



Dimensionality reduction of non stationary

spiking data

Method can infer B well even in highly non stationary settings — see Pfau,

Pnevmatikakis et al (2013) for details.



Smooth, clustered activity in spinal cord

— Machado, Buesing et al. 2014. data; spikes and rates



Measuring phase tuning in single neurons



Mapping phase tuning across the population

— Machado, Buesing et al. 2014



Extension: Connectivity at the dendritic scale

Ramon y Cajal, 1888.



Signal processing on trees

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.

(Djurisic et al., 2004; Knopfel et al., 2006)



Basic paradigm: compartmental models

• write neuronal dynamics in terms of equivalent nonlinear, time-varying

RC circuits

• leads to a coupled system of stochastic differential equations



Simplest case: Kalman filter

Dynamics and observation equations:

d~V /dt = A~V + ~εt

~yt = Bt
~V + ~ηt

Vi(t) = voltage at compartment i

A = cable dynamics matrix: includes leak terms (Aii = −gl) and

intercompartmental terms (Aij = 0 unless compartments are adjacent)

Bt = observation matrix: point-spread function of microscope

Even this case is challenging, since d = dim(~V ) is very large

Standard Kalman filter: O(d3) computation per timestep (matrix inversion)



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR

observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can

approximate Kalman covariance Ct = cov(qt|Y1:t) as a perturbation of the

marginal covariance C0 + UtDtU
T
t , with C0 = limt→∞ cov(qt).

C0 is the solution to a Lyapunov equation. It turns out that we can solve

linear equations involving C0 in O(dim(q)) time via Gaussian belief

propagation, using the fact that the dendrite is a tree.

The necessary recursions — i.e., updating Ut, Dt and the Kalman mean

E(qt|Y1:t) — involve linear manipulations of C0, using

Ct = [(ACt−1A
T + Q)−1 + Bt]

−1

C0 + UtDtU
T
t =

(
[A(C0 + Ut−1Dt−1U

T
t−1)AT + Q]−1 + Bt

)−1
,

and can be done in O(dim(q)) time (Paninski, 2010). Generalizable to

many other state-space models (Pnevmatikakis and Paninski, 2011).

Examples: speckle, vertical



Application: synaptic locations/weights



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) +W ~U(t) + ~ε(t);

U(t) are known presynaptic spike times, and we want to detect which

compartments are connected (i.e., infer the weight matrix W ).

Loglikelihood is quadratic; W is a sparse vector. L1-penalized loglikelihood can

be optimized efficiently with homotopy (LARS) approach.

Total computation time: O(dTk); d = # compartments, T = # timesteps, k = #

nonzero weights.



Example: real neural geometry

700 timesteps observed; 40 random compartments (of > 2000) observed per

timestep. Zecevic data

Compressed sensing measurements improve accuracy further (Pakman et al 2013).



Conclusions

• Modern statistical approaches provide flexible, powerful

methods for answering key questions in neuroscience —

many of these problems are statistics problems in disguise

• Close relationships between biophysics, statistical modeling,

and experimental design

• Modern optimization methods make computations very

tractable; suitable for closed-loop experiments

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas
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