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The neural code

Input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)

Probabilistic formulation: p(y|x)



Multineuronal point-process GLM
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λi(t) = f

(

b + ~ki · ~x(t) +
∑

i′,j

hi′,jni′(t − j)

)

,

— Fit by L1-penalized maximum likelihood (concave optimization)

(Brillinger, 1988; Paninski, 2004; Truccolo et al., 2005)



Retinal ganglion neuronal data

Preparation: dissociated salamander and macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008)





Nearest-neighbor connectivity
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Network vs. stimulus drive

— Network effects are ≈ 50% as strong as stimulus effects





Model captures spatiotemporal cross-corrs



Maximum a posteriori decoding

arg max~x log P (~x|spikes) = arg max~x log P (spikes|~x) + log P (~x)

— log P (spikes|~x) is concave in ~x: concave optimization again.

— Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of log P (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2009).

— Including network terms improves decoding accuracy.



Key question: how important is timing?

(Pillow et al., 2009; Paninski et al., 2007; Ahmadian et al., 2009)



Extension: latent “common input” effects

State-space setting; fast estimation methods (Kulkarni and Paninski, 2007;

Khuc-Trong and Rieke, 2008; Wu et al., 2009; Vidne et al., 2009)



Optimal stimulus design

Idea: we have full control over the stimuli we present. Can we

choose stimuli ~xt to maximize the informativeness of each trial?

— More quantitatively, optimize I(nt; θ|~xt) with respect to ~xt.

Maximizing I(nt; θ; ~xt) =⇒ minimizing uncertainty about θ.

In general, very hard to do: high-d integration over θ to

compute I(nt; θ|~xt), high-d optimization to select best ~xt.

GLM setting makes this surprisingly tractable

(Lewi et al., 2009).



Fast stimulus optimization

λi ∼ Poiss(λi)

λi|~xi, ~θ = f(~k · ~xi +
∑

j

ajri−j)

log p(ri|~xi, ~θ) = −f(~k ·~xi +
∑

j

ajri−j)+ri log f(~k ·~xi +
∑

j

ajri−j)

Two key points:

• Likelihood is “rank-1” — only depends on ~θ along ~z = (~x, ~r).

• f convex and log-concave =⇒ log-likelihood concave in ~θ

Idea: Laplace approximation:

p(~θ|{~xi, ri}i≤N) ≈ N (µN , CN)

— fast low-rank methods let us update µN , CN and compute the

optimal stimulus (maximize I(nt; θ|~xt)) in O(dim(~xt)
2) time.



Infomax vs. randomly-chosen stimuli



Simulated example

— infomax can be an order of magnitude more efficient.



Application to real data: choosing an optimal

stimulus sequence

— stimuli chosen from a fixed pool; greater improvements

expected if we can choose arbitrary stimuli on each trial.



Handling nonstationary parameters

Various sources of nonsystematic nonstationarity:

• Plasticity/adaptation

• Changes in arousal / attentive state

• Changes in health / excitability of preparation

Solution: represent parameter θ in a state-space model

(Czanner et al., 2008; Lewi et al., 2009):

~θN+1 = ~θN + ǫ; ǫ ∼ N (0, Q)



Simulation: nonstationary parameters



Conclusions

• GLM and state-space approach provides flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between encoding, decoding, and

experimental design (Paninski et al., 2007)

• Log-concavity, banded matrix methods make computations

very tractable

• Many opportunities for applications of statistical ideas in

neuroscience
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