Two problems from neural data analysis:

Sparse entropy estimation and efficient adaptive experimental design

Liam Paninski

Department of Statistics and Center for Theoretical Neuroscience Columbia University
http://www.stat.columbia.edu/~liam
liam@stat.columbia.edu
September 7, 2006

The fundamental question in

neuroscience

Spike Responses

The neural code: what is P (response \mid stimulus)?

Main question: how to estimate $P(r \mid s)$ from (sparse) experimental data?

Curse of dimensionality

Both stimulus and response can be very high-dimensional.

Stimuli:

- images
- sounds
- time-varying behavior

Responses:

- observations from single or multiple simultaneously-recorded point processes

Avoiding the curse of insufficient data

1: Estimate some functional $f(p)$ instead of full joint $p(r, s)$

- information-theoretic functionals

2: Select stimuli more efficiently

- optimal experimental design

3: Improved nonparametric estimators

- minimax theory for discrete distributions under KL loss
(4: Parametric approaches; connections to biophysical models)

Part 1: Estimation of information

Many central questions in neuroscience are inherently information-theoretic:

- What inputs are most reliably encoded by a given neuron?
- Are sensory neurons optimized to transmit information about the world to the brain?
- Do noisy synapses limit the rate of information flow from neuron to neuron?

Quantification of "information" is fundamental problem.
(...interest in neuroscience but also physics, telecommunications, genomics, etc.)

Shannon mutual information

$$
I(X ; Y)=\int_{\mathcal{X} \times \mathcal{Y}} d p(x, y) \log \frac{d p(x, y)}{d p(x) \times p(y)}
$$

Information-theoretic justifications:

- invariance
- "uncertainty" axioms
- data processing inequality
- channel and source coding theorems

But obvious open experimental question:

- is this computable for real data?

How to estimate information

I very hard to estimate in general...
... but lower bounds are easier.

Data processing inequality:

$$
I(X ; Y) \geq I(S(X) ; T(Y))
$$

Suggests a sieves-like approach.

Discretization approach

Discretize $X, Y \rightarrow X_{d i s c}, Y_{\text {disc }}$, estimate

$$
I_{\text {discrete }}(X ; Y)=I\left(X_{\text {disc }} ; Y_{\text {disc }}\right)
$$

- Data processing inequality $\Longrightarrow I_{\text {discrete }} \leq I$
- $I_{\text {discrete }} \nearrow I$ as partition is refined

Strategy: refine partition as samples N increases; if number of bins m doesn't grow too fast, $\hat{I} \rightarrow I_{\text {discrete }} \nearrow I$

Completely nonparametric, but obvious concerns:

- Want $N \gg m(N)$ samples, to "fill in" histograms $p(x, y)$
- How large is bias, variance for fixed m ?

Bias is major problem

$$
\begin{aligned}
\hat{I}_{M L E}(X ; Y) & =\sum_{x=1}^{m_{x}} \sum_{y=1}^{m_{y}} \hat{p}_{M L E}(x, y) \log \frac{\hat{p}_{M L E}(x, y)}{\hat{p}_{M L E}(x) \hat{p}_{M L E}(y)} \\
\hat{p}_{M L E}(x) & =p_{N}(x)=\frac{n(x)}{N} \quad(\text { empirical measure })
\end{aligned}
$$

Fix $p(x, y), m_{x}, m_{y}$ and let sample size $N \rightarrow \infty$. Then:

- $\operatorname{Bias}\left(\hat{I}_{M L E}\right): \sim\left(m_{x} m_{y}-m_{x}-m_{y}+1\right) / 2 N$.
- Variance $\left(\hat{I}_{M L E}\right): \sim(\log m)^{2} / N$; dominated by bias if $m=m_{x} m_{y}$ large.
- No unbiased estimator exists.
(Miller, 1955; Paninski, 2003)

Convergence of common information estimators

Result 1: If $N / m \rightarrow \infty, \hat{I}_{M L E}$ and related estimators universally almost surely consistent.

Converse: if $N / m \rightarrow c<\infty, \hat{I}_{M L E}$ and related estimators typically converge to wrong answer almost surely. (Asymptotic bias can often be computed explicitly.)

Implication: if N / m small, large bias although errorbars vanish, even if "bias-corrected" estimators are used (Paninski, 2003).

Estimating information on m bins with

 fewer than m samplesResult 2: A new estimator that is uniformly consistent as $N \rightarrow \infty$ even if $N / m \rightarrow 0$ (albeit sufficiently slowly)

Error bounds good for all underlying distributions: estimator works well even in worst case

Interpretation: information is strictly easier to estimate than p ! (Paninski, 2004)

Derivation of new estimator

Suffices to develop good estimator of discrete entropy:

$$
\begin{gathered}
I_{\text {discrete }}(X ; Y)=H\left(X_{\text {disc }}\right)+H\left(Y_{\text {disc }}\right)-H\left(X_{\text {disc }}, Y_{\text {disc }}\right) \\
H(X)=-\sum_{x=1}^{m_{x}} p(x) \log p(x)
\end{gathered}
$$

Derivation of new estimator

Variational idea: choose estimator that minimizes upper bound on error over

$$
\mathcal{H}=\left\{\hat{H}: \hat{H}\left(p_{N}\right)=\sum_{i} g\left(p_{N}(i)\right)\right\} \quad\left(p_{N}=\text { empirical measure }\right)
$$

Approximation-theoretic (binomial) bias bound
$\max _{p} \operatorname{Bias}_{p}(\hat{H}) \leq B^{*}(\hat{H}) \equiv m \cdot \max _{0 \leq p \leq 1}\left|-p \log p-\sum_{j=0}^{N} g\left(\frac{j}{N}\right) B_{N, j}(p)\right|$
McDiarmid-Steele bound on variance

$$
\max _{p} \operatorname{Var}_{p}(\hat{H}) \leq V^{*}(\hat{H}) \equiv N \max _{j}\left|g\left(\frac{j}{N}\right)-g\left(\frac{j-1}{N}\right)\right|^{2}
$$

Derivation of new estimator

Choose estimator to minimize (convex) error bound over (convex) space \mathcal{H} :

$$
\hat{H}_{B U B}=\operatorname{argmin}_{\hat{H} \in \mathcal{H}}\left[B^{*}(\hat{H})^{2}+V^{*}(\hat{H})\right] .
$$

Optimization of convex functions on convex parameter spaces is computationally tractable by simple descent methods

Consistency proof involves Stone-Weierstrass theorem, penalized polynomial approximation theory in Poisson limit $N / m \rightarrow c$.

Error comparisons: upper and lower bounds

Undersampling example

$m_{x}=m_{y}=1000 ; N / m_{x y}=0.25$
$\hat{I}_{M L E}=2.42 \mathrm{bits}$
"bias-corrected" $\hat{I}_{M L E}=-0.47$ bits
$\hat{I}_{B U B}=\mathbf{0 . 7 4}$ bits; conservative (worst-case RMS upper bound) error: ± 0.2 bits true $I(X ; Y)=\mathbf{0 . 7 6}$ bits

Shannon $(-p \log p)$ is special

Obvious conjecture: $\sum_{i} p_{i}^{\alpha}, 0<\alpha<1$ (Renyi entropy) should behave similarly.

Result 3: Surprisingly, not true: no estimator can uniformly estimate $\sum_{i} p_{i}^{\alpha}, \alpha \leq 1 / 2$, if $N \sim m$ (Paninski, 2004).

In fact, need $N>m^{(1-\alpha) / \alpha}$: smaller $\alpha \Longrightarrow$ more data needed. (Proof via Bayesian lower bounds on minimax error.)

Directions

- KL-minimax estimation of full distribution in sparse limit $N / m \rightarrow 0$ (Paninski, 2005b)
- Continuous (unbinned) entropy estimators: similar result holds for kernel density estimates
- Sparse testing for uniformity: much easier than estimation ($N \gg m^{1 / 2}$ suffices)
- Open questions: $1 / 2<\alpha<1$? Other functionals?

Part 2: Adaptive optimal design of experiments

Assume:

- parametric model $p_{\theta}(y \mid \vec{x})$ on outputs y given inputs \vec{x}
- prior distribution $p(\theta)$ on finite-dimensional model space

Goal: estimate θ from experimental data

Usual approach: draw stimuli i.i.d. from fixed $p(\vec{x})$

Adaptive approach: choose $p(\vec{x})$ on each trial to maximize $I(\theta ; y \mid \vec{x})$ (e.g. "staircase" methods).

Snapshot: one-dimensional simulation

Asymptotic result

Under regularity conditions, a posterior CLT holds (Paninski, 2005a):

$$
p_{N}\left(\sqrt{N}\left(\theta-\theta_{0}\right)\right) \rightarrow \mathcal{N}\left(\mu_{N}, \sigma^{2}\right) ; \quad \mu_{N} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- $\left(\sigma_{i i d}^{2}\right)^{-1}=E_{x}\left(I_{x}\left(\theta_{0}\right)\right)$
- $\left(\sigma_{\text {info }}^{2}\right)^{-1}=\operatorname{argmax}_{C \in c o\left(I_{x}\left(\theta_{0}\right)\right)} \log |C|$
$\Longrightarrow \sigma_{\text {iid }}^{2}>\sigma_{\text {info }}^{2}$ unless $I_{x}\left(\theta_{0}\right)$ is constant in x
$c o\left(I_{x}\left(\theta_{0}\right)\right)=$ convex closure (over x) of Fisher information matrices $I_{x}\left(\theta_{0}\right) .(\log |C|$ strictly concave: maximum unique.)

Illustration of theorem

Technical details

Stronger regularity conditions than usual to prevent "obsessive" sampling and ensure consistency.

Significant complication: exponential decay of posteriors p_{N} off of neighborhoods of θ_{0} does not necessarily hold.

Psychometric example

- stimuli x one-dimensional: intensity
- responses y binary: detect/no detect

$$
p(1 \mid x, \theta)=f((x-\theta) / a)
$$

- scale parameter a (assumed known)
- want to learn threshold parameter θ as quickly as possible

Psychometric example: results

- variance-minimizing and info-theoretic methods asymptotically same
- just one unique function f^{*} for which $\sigma_{i i d}=\sigma_{o p t}$; for any other $f, \sigma_{i i d}>\sigma_{\text {opt }}$

$$
I_{x}(\theta)=\frac{\left(\dot{f}_{a, \theta}\right)^{2}}{f_{a, \theta}\left(1-f_{a, \theta}\right)}
$$

- f^{*} solves

$$
\begin{gathered}
\dot{f}_{a, \theta}=c \sqrt{f_{a, \theta}\left(1-f_{a, \theta}\right)} \\
f^{*}(t)=\frac{\sin (c t)+1}{2}
\end{gathered}
$$

- $\sigma_{i i d}^{2} / \sigma_{o p t}^{2} \sim 1 / a$ for a small

Computing the optimal stimulus

Simple Poisson regression model for neural data:

$$
\begin{gathered}
y_{i} \sim \operatorname{Poiss}\left(\lambda_{i}\right) \\
\lambda_{i} \mid \vec{x}_{i}, \vec{\theta}=f\left(\vec{\theta} \cdot \vec{x}_{i}\right)
\end{gathered}
$$

Goal: learn $\vec{\theta}$ in as few trials as possible.
Problems:

- $\vec{\theta}$ is very high-dimensional; difficult to update $p\left(\vec{\theta} \mid \vec{x}_{i}, y_{i}\right)$, compute $I(\theta, y \mid \vec{x})$
- \vec{x} is very high-dimensional; difficult to optimize $I(\theta, y \mid \vec{x})$
- Joint work with J. Lewi and R. Butera, Georgia Tech (Lewi et al., 2006)

Efficient updating

Idea: Laplace approximation

$$
p\left(\vec{\theta} \mid\left\{\vec{x}_{i}, y_{i}\right\}_{i \leq N}\right) \approx \mathcal{N}\left(\mu_{N}, C_{N}\right)
$$

Justification:

- posterior CLT
- f convex and log-concave \Longrightarrow log-likelihood concave in $\vec{\theta}$ \Longrightarrow log-posterior is also concave

Efficient updating

Likelihood is "rank-1" - only depends on $\vec{\theta}$ along \vec{x}.
log prior

log likelihood

log posterior

Updating μ_{N} : one-d search
Updating C_{N} : rank-one update, $C_{N}=\left(C_{N-1}^{-1}+b \vec{x}^{t} \vec{x}\right)^{-1}-$ use Woodbury lemma

Total time for update of posterior: $O\left(d^{2}\right)$

Step 3: Efficient stimulus optimization

Laplace approximation $\Longrightarrow I(\theta ; r \mid \vec{x}) \sim E_{r \mid \vec{x}} \log \frac{\left|C_{N-1}\right|}{\left|C_{N}\right|}$

- this is nonlinear and difficult, but we can simplify using perturbation theory: $\log |I+A| \approx \operatorname{trace}(A)$.

Now we can take averages over $p(r \mid \vec{x})=\int p(r \mid \theta, \vec{x}) p_{N}(\theta) d \theta$: standard Fisher info calculation given Poisson assumption on r.

Further assuming $f()=.\exp ($.$) allows us to compute$ expectation exactly, using m.g.f. of Gaussian.
...finally, we want to maximize $F(\vec{x})=g\left(\mu_{N} \cdot \vec{x}\right) h\left(\vec{x}^{t} C_{N} \vec{x}\right)$.

Computing the optimal \vec{x}

$\max _{\vec{x}} g\left(\mu_{N} \cdot \vec{x}\right) h\left(\vec{x}^{t} C_{N} \vec{x}\right)$ increases with $\|\vec{x}\|_{2}$: constraining $\|\vec{x}\|_{2}$ reduces problem to nonlinear eigenvalue problem.

Lagrange multiplier approach reduces problem to 1-d linesearch, once eigendecomposition is computed - much easier than full d-dimensional optimization!

Rank-one update of eigendecomposition may be performed in $O\left(d^{2}\right)$ time (Gu and Eisenstat, 1994).
\Longrightarrow Computing optimal stimulus takes $O\left(d^{2}\right)$ time.

Near real-time adaptive design

Asympotic variance

- despite approximations, asymptotic covariance achieves analytical prediction from CLT.

Visual neuron model example

- infomax approach is an order of magnitude more efficient.
- can also track non-stationary $\vec{\theta}$ via extended Kalman filter formulation (Lewi et al., 2006).
- currently extending results to GLM (not just Poisson regression model)

Conclusions

- Neuroscience is becoming more "statistics-hungry": growing demand for sophisticated data analysis and statistical theories of the brain.
- Conversely, neuroscience is a rich source of interesting statistical problems.

References

Gu, M. and Eisenstat, S. (1994). A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15(4):1266-1276.

Lewi, J., Butera, R., and Paninski, L. (2006). Real-time adaptive information-theoretic optimization of neurophysiological experiments. NIPS.

McDiarmid, C. (1989). On the method of bounded differences. In Surveys in Combinatorics, pages 148-188. Cambridge University Press.

Miller, G. (1955). Note on the bias of information estimates. In Information theory in psychology II-B, pages 95-100.

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15:1191-1253.

Paninski, L. (2004). Estimating entropy on m bins given fewer than m samples. IEEE Transactions on Information Theory, 50:2200-2203.

Paninski, L. (2005a). Asymptotic theory of information-theoretic experimental design. Neural Computation, 17:1480-1507.

Paninski, L. (2005b). Variational minimax estimation of discrete distributions under KL loss. Advances in Neural Information Processing Systems, 17.

Entropy bias bound

$$
\begin{aligned}
\operatorname{Bias}_{p}(\hat{H}) & =E_{p}(\hat{H})-H(p) \\
& =\sum_{i=1}^{m}\left(p(i) \log p(i)+\sum_{j=0}^{N} g\left(\frac{j}{N}\right) B_{N, j}(p(i))\right) \\
& \leq m \cdot \max _{0 \leq p \leq 1}\left|-p \log p-\sum_{j=0}^{N} g\left(\frac{j}{N}\right) B_{N, j}(p)\right|
\end{aligned}
$$

- $B_{N, j}(p)=\binom{N}{j} p^{j}(1-p)^{N-j}$: polynomial in p
- If $\sum_{j} g(j) B_{N, j}(p)$ close to $-p \log p$ for all p, bias will be small \Longrightarrow standard uniform polynomial approximation theory

Back

Entropy variance bound

"Method of bounded differences" (McDiarmid, 1989): let $F\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ be a function of N i.i.d. r.v.'s.

If any single x_{i} has small effect on F, i.e,

$$
\sup |F(\ldots, x, \ldots)-F(\ldots, y, \ldots)|<c,
$$

then

$$
\operatorname{Var}(F)<\frac{N}{4} c^{2}
$$

(inequalities due to Azuma-Hoeffding, Efron-Stein, Steele, etc.).
Our case:

$$
\begin{gathered}
\hat{H}=\sum_{i} g\left(\frac{n(i)}{N}\right) \\
\max _{j}\left|g\left(\frac{j}{N}\right)-g\left(\frac{j-1}{N}\right)\right|<c \Longrightarrow \operatorname{Var}\left(\sum_{i} g\left(\frac{n(i)}{N}\right)\right) \leq N c^{2}
\end{gathered}
$$

