Two problems from neural data analysis:

Sparse entropy estimation and efficient adaptive experimental design

Liam Paninski

Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/~liam *liam@stat.columbia.edu* September 7, 2006

The fundamental question in neuroscience

The **neural code**: what is $P(response \mid stimulus)$?

Main question: how to estimate P(r|s) from (sparse) experimental data?

Curse of dimensionality

Both stimulus and response can be very high-dimensional.

Stimuli:

- images
- sounds
- time-varying behavior

Responses:

• observations from single or multiple simultaneously-recorded point processes

Avoiding the curse of insufficient data

- **1**: Estimate some functional f(p) instead of full joint p(r, s)
- information-theoretic functionals
- **2**: Select stimuli more efficiently
- optimal experimental design
- **3**: Improved nonparametric estimators
- minimax theory for discrete distributions under KL loss
- (4: Parametric approaches; connections to biophysical models)

Part 1: Estimation of information

Many central questions in neuroscience are inherently information-theoretic:

- What inputs are most reliably encoded by a given neuron?
- Are sensory neurons optimized to transmit information about the world to the brain?
- Do noisy synapses limit the rate of information flow from neuron to neuron?

Quantification of "information" is fundamental problem.

(...interest in neuroscience but also physics, telecommunications, genomics, etc.)

Shannon mutual information

$$I(X;Y) = \int_{\mathcal{X}\times\mathcal{Y}} dp(x,y) \log \frac{dp(x,y)}{dp(x)\times p(y)}$$

Information-theoretic justifications:

- invariance
- "uncertainty" axioms
- data processing inequality
- channel and source coding theorems

But obvious open experimental question:

• is this computable for real data?

How to estimate information

I very hard to estimate in general...

... but lower bounds are easier.

Data processing inequality:

 $I(X;Y) \ge I(S(X);T(Y))$

Suggests a sieves-like approach.

Discretization approach

Discretize $X, Y \to X_{disc}, Y_{disc}$, estimate $I_{discrete}(X;Y) = I(X_{disc};Y_{disc})$

- Data processing inequality $\implies I_{discrete} \leq I$
- $I_{discrete} \nearrow I$ as partition is refined

Strategy: refine partition as samples N increases; if number of bins m doesn't grow too fast, $\hat{I} \to I_{discrete} \nearrow I$

Completely nonparametric, but obvious concerns:

- Want $N \gg m(N)$ samples, to "fill in" histograms p(x, y)
- How large is bias, variance for fixed m?

Bias is major problem

$$\hat{I}_{MLE}(X;Y) = \sum_{x=1}^{m_x} \sum_{y=1}^{m_y} \hat{p}_{MLE}(x,y) \log \frac{\hat{p}_{MLE}(x,y)}{\hat{p}_{MLE}(x)\hat{p}_{MLE}(y)}$$
$$\hat{p}_{MLE}(x) = p_N(x) = \frac{n(x)}{N} \quad \text{(empirical measure)}$$

Fix $p(x, y), m_x, m_y$ and let sample size $N \to \infty$. Then:

- Bias (\hat{I}_{MLE}) : ~ $(m_x m_y m_x m_y + 1)/2N$.
- Variance (\hat{I}_{MLE}) : ~ $(\log m)^2/N$; dominated by bias if $m = m_x m_y$ large.
- No unbiased estimator exists.

(Miller, 1955; Paninski, 2003)

Convergence of common information estimators

Result 1: If $N/m \to \infty$, \hat{I}_{MLE} and related estimators universally almost surely consistent.

Converse: if $N/m \to c < \infty$, \hat{I}_{MLE} and related estimators typically converge to *wrong* answer almost surely. (Asymptotic bias can often be computed explicitly.)

Implication: if N/m small, large bias although errorbars vanish, even if "bias-corrected" estimators are used (Paninski, 2003).

Estimating information on m bins with fewer than m samples

Result 2: A new estimator that is uniformly consistent as $N \to \infty$ even if $N/m \to 0$ (albeit sufficiently slowly)

Error bounds good for all underlying distributions: estimator works well even in *worst* case

Interpretation: information is strictly easier to estimate than p! (Paninski, 2004)

Derivation of new estimator

Suffices to develop good estimator of discrete entropy:

$$I_{discrete}(X;Y) = H(X_{disc}) + H(Y_{disc}) - H(X_{disc},Y_{disc})$$

$$H(X) = -\sum_{x=1}^{m_x} p(x) \log p(x)$$

Derivation of new estimator

Variational idea: choose estimator that minimizes upper bound on error over

$$\mathcal{H} = \{\hat{H} : \hat{H}(p_N) = \sum_i g(p_N(i))\} \quad (p_N = \text{empirical measure})$$

Approximation-theoretic (binomial) bias bound

$$\max_{p} Bias_{p}(\hat{H}) \leq B^{*}(\hat{H}) \equiv m \cdot \max_{0 \leq p \leq 1} \left| -p \log p - \sum_{j=0}^{N} g(\frac{j}{N}) B_{N,j}(p) \right|$$

McDiarmid-Steele bound on variance

$$\max_{p} Var_{p}(\hat{H}) \leq V^{*}(\hat{H}) \equiv N \max_{j} \left| g(\frac{j}{N}) - g(\frac{j-1}{N}) \right|^{2}$$

Derivation of new estimator

Choose estimator to minimize (convex) error bound over (convex) space \mathcal{H} :

$$\hat{H}_{BUB} = \operatorname{argmin}_{\hat{H} \in \mathcal{H}} [B^*(\hat{H})^2 + V^*(\hat{H})].$$

Optimization of convex functions on convex parameter spaces is computationally tractable by simple descent methods

Consistency proof involves Stone-Weierstrass theorem, penalized polynomial approximation theory in Poisson limit $N/m \rightarrow c$.

Error comparisons: upper and lower bounds

Undersampling example

 $m_x = m_y = 1000; N/m_{xy} = 0.25$ $\hat{I}_{MLE} = 2.42$ bits "bias-corrected" $\hat{I}_{MLE} = -0.47$ bits $\hat{I}_{BUB} = 0.74$ bits; conservative (worst-case RMS upper bound) error: ± 0.2 bits true I(X;Y) = 0.76 bits

Shannon $(-p \log p)$ is special

Obvious conjecture: $\sum_i p_i^{\alpha}, 0 < \alpha < 1$ (Renyi entropy) should behave similarly.

Result 3: Surprisingly, not true: no estimator can uniformly estimate $\sum_{i} p_{i}^{\alpha}$, $\alpha \leq 1/2$, if $N \sim m$ (Paninski, 2004).

In fact, need $N > m^{(1-\alpha)/\alpha}$: smaller $\alpha \implies$ more data needed. (Proof via Bayesian lower bounds on minimax error.)

Directions

- KL-minimax estimation of full distribution in sparse limit $N/m \rightarrow 0$ (Paninski, 2005b)
- Continuous (unbinned) entropy estimators: similar result holds for kernel density estimates
- Sparse testing for uniformity: much easier than estimation $(N \gg m^{1/2} \text{ suffices})$
- Open questions: $1/2 < \alpha < 1$? Other functionals?

Part 2: Adaptive optimal design of experiments

Assume:

- parametric model $p_{\theta}(y|\vec{x})$ on outputs y given inputs \vec{x}
- prior distribution $p(\theta)$ on finite-dimensional model space

Goal: estimate θ from experimental data

Usual approach: draw stimuli i.i.d. from fixed $p(\vec{x})$

Adaptive approach: choose $p(\vec{x})$ on each trial to maximize $I(\theta; y | \vec{x})$ (e.g. "staircase" methods).

Snapshot: one-dimensional simulation

Asymptotic result

Under regularity conditions, a posterior CLT holds (Paninski, 2005a):

$$p_N\left(\sqrt{N}(\theta - \theta_0)\right) \to \mathcal{N}(\mu_N, \sigma^2); \quad \mu_N \sim \mathcal{N}(0, \sigma^2)$$

• $(\sigma_{iid}^2)^{-1} = E_x(I_x(\theta_0))$
• $(\sigma_{info}^2)^{-1} = \operatorname{argmax}_{C \in co(I_x(\theta_0))} \log |C|$
 $\implies \sigma_{iid}^2 > \sigma_{info}^2$ unless $I_x(\theta_0)$ is constant in x

 $co(I_x(\theta_0)) = convex closure (over x) of Fisher information$ $matrices <math>I_x(\theta_0)$. (log |C| strictly concave: maximum unique.)

Illustration of theorem

Technical details

Stronger regularity conditions than usual to prevent "obsessive" sampling and ensure consistency.

Significant complication: exponential decay of posteriors p_N off of neighborhoods of θ_0 does not necessarily hold.

Psychometric example

- stimuli x one-dimensional: intensity
- responses y binary: detect/no detect

$$p(1|x,\theta) = f((x-\theta)/a)$$

- scale parameter a (assumed known)
- want to learn threshold parameter θ as quickly as possible

Psychometric example: results

- variance-minimizing and info-theoretic methods asymptotically same
- just one unique function f^* for which $\sigma_{iid} = \sigma_{opt}$; for any other f, $\sigma_{iid} > \sigma_{opt}$

$$I_x(\theta) = \frac{(\dot{f}_{a,\theta})^2}{f_{a,\theta}(1 - f_{a,\theta})}$$

$$\dot{f}_{a,\theta} = c\sqrt{f_{a,\theta}(1 - f_{a,\theta})}$$

$$f^*(t) = \frac{\sin(ct) + 1}{2}$$

• $\sigma_{iid}^2 / \sigma_{opt}^2 \sim 1/a$ for a small

Computing the optimal stimulus

Simple Poisson regression model for neural data:

 $y_i \sim Poiss(\lambda_i)$ $\lambda_i | \vec{x}_i, \vec{\theta} = f(\vec{\theta} \cdot \vec{x}_i)$

Goal: learn $\vec{\theta}$ in as few trials as possible.

Problems:

- $\vec{\theta}$ is very high-dimensional; difficult to update $p(\vec{\theta}|\vec{x}_i, y_i)$, compute $I(\theta, y|\vec{x})$
- \vec{x} is very high-dimensional; difficult to optimize $I(\theta, y | \vec{x})$

— Joint work with J. Lewi and R. Butera, Georgia Tech (Lewi et al., 2006)

Efficient updating

Idea: Laplace approximation

 $p(\vec{\theta}|\{\vec{x}_i, y_i\}_{i < N}) \approx \mathcal{N}(\mu_N, C_N)$

Justification:

- posterior CLT
- f convex and log-concave \implies log-likelihood concave in $\vec{\theta}$ \implies log-posterior is also concave

Efficient updating

Likelihood is "rank-1" — only depends on $\vec{\theta}$ along \vec{x} .

Updating μ_N : one-d search

Updating C_N : rank-one update, $C_N = (C_{N-1}^{-1} + b\vec{x}^t\vec{x})^{-1}$ — use Woodbury lemma

Total time for update of posterior: $O(d^2)$

Step 3: Efficient stimulus optimization

Laplace approximation $\implies I(\theta; r | \vec{x}) \sim E_{r | \vec{x}} \log \frac{|C_{N-1}|}{|C_N|}$ — this is nonlinear and difficult, but we can simplify using perturbation theory: $\log |I + A| \approx \operatorname{trace}(A)$.

Now we can take averages over $p(r|\vec{x}) = \int p(r|\theta, \vec{x}) p_N(\theta) d\theta$: standard Fisher info calculation given Poisson assumption on r.

Further assuming $f(.) = \exp(.)$ allows us to compute expectation exactly, using m.g.f. of Gaussian.

...finally, we want to maximize $F(\vec{x}) = g(\mu_N \cdot \vec{x})h(\vec{x}^t C_N \vec{x}).$

Computing the optimal \vec{x}

 $\max_{\vec{x}} g(\mu_N \cdot \vec{x}) h(\vec{x}^t C_N \vec{x})$ increases with $||\vec{x}||_2$: constraining $||\vec{x}||_2$ reduces problem to nonlinear eigenvalue problem.

Lagrange multiplier approach reduces problem to 1-d linesearch, once eigendecomposition is computed — much easier than full *d*-dimensional optimization!

Rank-one update of eigendecomposition may be performed in $O(d^2)$ time (Gu and Eisenstat, 1994).

 \implies Computing optimal stimulus takes $O(d^2)$ time.

Near real-time adaptive design

Asympotic variance

— despite approximations, asymptotic covariance achieves analytical prediction from CLT.

Visual neuron model example

— infomax approach is an order of magnitude more efficient. — can also track non-stationary $\vec{\theta}$ via extended Kalman filter formulation (Lewi et al., 2006).

— currently extending results to GLM (not just Poisson regression model)

Conclusions

- Neuroscience is becoming more "statistics-hungry": growing demand for sophisticated data analysis and statistical theories of the brain.
- Conversely, neuroscience is a rich source of interesting statistical problems.

References

- Gu, M. and Eisenstat, S. (1994). A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15(4):1266–1276.
- Lewi, J., Butera, R., and Paninski, L. (2006). Real-time adaptive information-theoretic optimization of neurophysiological experiments. *NIPS*.
- McDiarmid, C. (1989). On the method of bounded differences. In Surveys in Combinatorics, pages 148–188. Cambridge University Press.
- Miller, G. (1955). Note on the bias of information estimates. In *Information theory in* psychology II-B, pages 95–100.
- Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15:1191–1253.
- Paninski, L. (2004). Estimating entropy on m bins given fewer than m samples. *IEEE Transactions on Information Theory*, 50:2200–2203.
- Paninski, L. (2005a). Asymptotic theory of information-theoretic experimental design. Neural Computation, 17:1480–1507.
- Paninski, L. (2005b). Variational minimax estimation of discrete distributions under KL loss. Advances in Neural Information Processing Systems, 17.

Entropy bias bound

$$Bias_{p}(\hat{H}) = E_{p}(\hat{H}) - H(p)$$

= $\sum_{i=1}^{m} \left(p(i) \log p(i) + \sum_{j=0}^{N} g(\frac{j}{N}) B_{N,j}(p(i)) \right)$
 $\leq m \cdot \max_{0 \leq p \leq 1} |-p \log p - \sum_{j=0}^{N} g(\frac{j}{N}) B_{N,j}(p)|$

• $B_{N,j}(p) = {N \choose j} p^j (1-p)^{N-j}$: polynomial in p

• If $\sum_{j} g(j) B_{N,j}(p)$ close to $-p \log p$ for all p, bias will be small

 \implies standard uniform polynomial approximation theory

Back

Entropy variance bound

"Method of bounded differences" (McDiarmid, 1989): let $F(x_1, x_2, ..., x_N)$ be a function of N i.i.d. r.v.'s.

If any single x_i has small effect on F, i.e,

$$\sup |F(..., x, ...) - F(..., y, ...)| < c,$$

then

$$Var(F) < \frac{N}{4}c^2$$

(inequalities due to Azuma-Hoeffding, Efron-Stein, Steele, etc.). Our case:

$$\hat{H} = \sum_{i} g(\frac{n(i)}{N})$$

$$\max_{j} \left| g(\frac{j}{N}) - g(\frac{j-1}{N}) \right| < c \implies Var \left(\sum_{i} g(\frac{n(i)}{N}) \right) \le Nc^2$$

Back

37-1