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Some exciting open challenges for

statistical neuroscience
• inferring biophysical neuronal properties from noisy recordings

• reconstructing the full dendritic spatiotemporal voltage from noisy,

subsampled observations

• estimating subthreshold voltage given superthreshold spike trains

• extracting spike timing from slow, noisy calcium imaging data

• reconstructing presynaptic conductance from postsynaptic voltage

recordings

• inferring connectivity from large populations of spike trains

• decoding behaviorally-relevant information from spike trains

• optimal control of neural spike timing

— to solve these, we need to combine the two classical branches of

computational neuroscience: dynamical systems and neural coding



An inverse problem: inferring cable equation

parameters

Can we recover detailed biophysical properties?

• Active: membrane channel densities

• Passive: axial resistances, “leakiness” of membranes

• Dynamic: spatiotemporal synaptic input



Estimating biophysical parameters from V (x, t)

Key point: if we observe full Vi(t) + cell geometry, channel kinetics known

+ current noise is Gaussian,

then estimating unknown parameters is standard convex nonnegative

regression problem (albeit high-d): minθ≥0 ||Y −Xθ||2.



Estimating channel densities from V (t)

(Huys et al., 2006)



Estimating channel densities from V (t)
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Estimating non-homogeneous channel

densities



The filtering problem

Spatiotemporal imaging data is very exciting, but we have to

deal with noise and intermittent observations.

(Djurisic et al., 2004; Knopfel et al., 2006)



Basic paradigm: the Kalman filter

Variable of interest, qt, evolves according to a noisy differential

equation (Markov process):

dq/dt = f(qt) + ǫt.

Make noisy observations:

yt = g(qt) + ηt.

We want to infer E(qt|Y ): optimal estimate given observations.

We also want errorbars: V ar(qt|Y ) quantifies how much we

actually know about qt.

If f(.) and g(.) are linear, and ǫt and ηt are Gaussian, then

solution is classical: Kalman filter.



The forward recursion

We want p(qt|Y1:t) ∝ p(qt, Y1:t). We know that

p(Q, Y ) = p(Q)p(Y |Q) = p(q1)

(

T
∏

t=2

p(qt|qt−1)

)(

T
∏

t=1

p(yt|qt)
)

To compute p(qt, Y1:t) recursively, just write out marginal and pull out constants
from the integrals:

p(qt, Y1:t) =

∫

q1

∫

q2

. . .

∫

qt−1

p(Q1:t, Y1:t) =

∫

q1

∫

q2

. . .

∫

qt−1

p(q1)

(

t
∏

i=2

p(qi|qi−1)

)(

t
∏

i=1

p(yi|qi)

)

= p(yt|qt)

∫

qt−1

p(qt|qt−1)p(yt−1|qt−1)

∫

qt−2

. . .

∫

q2

p(q3|q2)p(y2|q2)

∫

q1

p(q2|q1)p(y1|q1)p(q1).

So, just recurse

p(qt, Y1:t) = p(yt|qt)
∫

qt−1

p(qt|qt−1)p(qt−1, Y1:t−1).

Linear-Gaussian case: requires O(dim(q)3T ) time; just matrix algebra.

Approximate solutions in more general case, e.g., Gaussian approximations

(Brown et al., 1998), or Monte Carlo (“particle filtering”).

Key point: efficient recursive computations =⇒ O(T ) time.



Application: incomplete observations of V (t)

— Leaky integrator model: dV/dt = gl[Vl − V (t)] + ǫt
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Multicompartmental case

Easy extension of Kalman method:

d~V /dt = A~V (t) + ~ǫt

~y(t) = B~V (t) + ~ηt

Example:

Vi(t) = voltage at compartment i

A = dynamics matrix (cable equation): includes leak

(Aii = −gl) and inter-compartmental terms (Aij = 0 for

non-adjacent compartments)

B = observation matrix



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR

observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can

approximate Kalman covariance Ct = cov(qt|Y1:t) as a perturbation of the

marginal covariance C0 + UtDtU
T
t , with C0 = limt→∞ cov(qt).

C0 is the solution to a Lyapunov equation. It turns out that we can solve

linear equations involving C0 in O(dim(q)) time via Gaussian belief

propagation, using the fact that the dendrite is a tree.

The necessary recursions — i.e., updating Ut, Dt and the Kalman mean

E(qt|Y1:t) — involve linear manipulations of C0, using

Ct = [(ACt−1A
T +Q)−1 +Bt]

−1

C0 + UtDtU
T
t =

(

[A(C0 + Ut−1Dt−1U
T
t−1)A

T +Q]−1 +Bt

)−1
,

and can be done in O(dim(q)) time (Paninski, 2009a).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_speckle.mp4
Media File (video/mp4)



Example: summed observations

(Loading low-rank-horiz.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_horiz.mp4
Media File (video/mp4)



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) +W ~U(t) + ~ǫ(t)

Uj(t) = known input terms

Example: U(t) are known presynaptic spike times, and we want

to detect which compartments are connected (i.e., infer the

weight matrix W ).



Detecting synapses
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Another application: neural prosthetics

qt: hand position (red square); E(qt|Y1:t): green circle

yt: vector of observed spike counts at time t from multiple

simultaneously recorded motor cortical neurons

(Loading Kalman-neural-decoding.mp4)

(Wu et al., 2006; Wu et al., 2009)


Convertified by iSquint - http://www.isquint.org

Kalman_neural_decoding.mp4
Media File (video/mp4)



Another look: computing the MAP path
We often want to compute the MAP estimate

Q̂ = argmax
Q

p(Q|Y ).

In standard Kalman setting, forward-backward recursions also compute MAP

(because E(Q|Y ) and Q̂ coincide if p(Q|Y ) is Gaussian).

More generally, write out the posterior:

log p(Q|Y ) = log p(Q) + log p(Y |Q) + const.

=
∑

t

log p(qt+1|qt) +
∑

t

log p(yt|qt) + const.

Two basic observations:

• If log p(qt+1|qt) and log p(yt|qt) are concave, then so is log p(Q|Y ).

• Hessian H of log p(Q|Y ) is block-tridiagonal: p(yt|qt) contributes a
block-diag term, and log p(qt+1|qt) contributes a block-tridiag term.

Now recall Newton’s method: iteratively solve HQdir = ∇. Solving tridiagonal

systems requires O(T ) time.

— computing MAP by Newton’s method requires O(T ) time, even in highly

non-Gaussian cases.



Constrained optimization

In many cases we need to impose constraints on qt (e.g., nonnegativity). Easy to

incorporate here, via interior-point (barrier) methods:

argmax
Q∈C

log p(Q|Y ) = lim
ǫց0

argmax
Q

{

log p(Q|Y ) + ǫ
∑

t

f(qt)

}

= lim
ǫց0

argmax
Q

{

∑

t

log p(qt+1|qt) + log p(yt|qt) + ǫf(qt)

}

;

f(.) is concave and approaching −∞ near boundary of constraint set C. The

Hessian remains block-tridiagonal and negative semidefinite for all ǫ > 0, so

optimization still requires just O(T ) time.



Example: computing the MAP subthreshold

voltage given superthreshold spikes

Leaky, noisy integrate-and-fire model:

Vt+dt = Vt +

(

−Vt

τ
+ It

)

dt+ σ
√
dtǫt, ǫt ∼ N (0, 1)

Observations: yt = 0 (no spike) if Vt < Vth; yt = 1 if Vt = Vth

Hard threshold =⇒ p(V |Y ) is very non-Gaussian: “corners” at Vt = Vth.

(Paninski, 2006)



Example: inferring presynaptic input

gj(t+ dt) = gj(t)− dtgj(t)/τj +Nj(t), Nj(t) ≥ 0

yt = It =
∑

j

gj(t)(Vj − Vt) + ǫt

Hidden state qt: vector of conductances gt (Paninski, 2009b)
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Example: inferring spike times from slow,

noisy calcium data

Ct+dt = Ct − dtCt/τ +Nt; Nt > 0; yt = Ct + ǫt

— nonnegative deconvolution is a recurring problem in signal processing

(Vogelstein et al., 2008).



Particle filter can extract spikes from

saturated recordings

(Vogelstein et al., 2009)



Next challenge: circuit inference



Monte Carlo EM approach

Given the spike times in the network, L1-penalized likelihood

optimization is easy. But we only have noisy calcium

observations Y ; true spike times are hidden variables. Thus an

EM approach is natural.

• E step: sample spike train responses R from p(R|Y, θ)
• M step: given sampled spike trains, perform L1-penalized

likelihood optimization to update parameters θ.

E step is hard part here. Use the fact that neurons interact

fairly weakly; thus we need to sample from a collection of

weakly-interacting Markov chains, via

Metropolis-within-blockwise-Gibbs forward-backward methods

(Neal et al., 2003).



Simulated circuit inference
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— Connections are inferred with the correct sign in conductance-based integrate-and-fire

networks with biologically plausible connectivity matrices (Mishchencko et al., 2009).

Good news: connections are inferred with the correct sign. But process is slow;

current work focusing on improved sampling methods (exploiting hybrid

forward-backward blockwise-Gibbs approach).



Optimal control of spike timing

Optimal experimental design and neural prosthetics applications

require us to perturb the network at will. How can we make a

neuron exactly fire when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(Vt + ht)

Vt+dt = Vt + dt (−gVt + aIt) +
√
dtσǫt, ǫt ∼ N (0, 1).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It
+ Hessian is tridiagonal =⇒ O(T ) optimization.



Simulated electrical control of spike timing
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Example: intracellular control of spike timing
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Optical conductance-based control of spiking

Vt+dt = Vt + dt
(

−gVt + git(V
i − Vt) + get (V

e − Vt)
)

+
√
dtσǫt, ǫt ∼ N (0, 1)

git+dt = git + dt

(

−git
τi

+ aiiL
i
t + aieL

e
t

)

; get+dt = get + dt

(

−get
τi

+ aeeL
e
t + aeiL

i
t

)
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One last extension: two-d smoothing

Estimation of two-d firing rate surfaces comes up in a number of examples:

• place fields / grid cells

• post-fitting in spike-triggered covariance analysis

• tracking of non-stationary (time-varying) tuning curves

• “inhomogeneous Markov interval” models for spike-history dependence

How to generalize fast 1-d state-space methods to 2-d case? Idea: use Gaussian

process priors which are carefully selected to give banded Hessians.

Model: hidden variable Q is a random surface with a Gaussian prior:

Q ∼ N (µ,C);

Spikes are generated by a point process whose rate is a function of Q:

λ(~x) = f [Q(~x)] (easy to incorporate additional effects here, e.g. spike history)

Now the Hessian of the log-posterior of Q is C−1 +D, where D is diagonal

(Cunningham et al., 2007). For Newton, we need to solve (C−1 +D)Qdir = ∇.



Example: nearest-neighbor smoothing prior

For prior covariance C such that C−1 contains only neighbor potentials, we can

solve (C−1 +D)Qdir = ∇ in O(dim(Q)1.5) time using direct methods

(“approximate minimum degree” algorithm — built-in to Matlab sparse A\b
code) and potentially in O(dim(Q)) time using multigrid (iterative) methods

(Rahnama Rad and Paninski, 2009).



Estimating a time-varying tuning curve given

a limited sample path



Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between forward-backward methods

familiar from state-space theory and banded matrices

familiar from spline theory

• Log-concavity, banded matrix methods make computations

very tractable
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