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The coming statistical neuroscience decade

Some notable recent developments:

• machine learning / statistics methods for extracting

information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing)

• optical methods (eg two-photon, FLIM) and optogenetics

(channelrhodopsin, viral tracers, “brainbow”)

• high-density multielectrode recordings (Litke’s 512-electrode

retinal readout system; Shepard’s 65,536-electrode active

array)



Some exciting open challenges

• inferring biophysical neuronal properties from noisy recordings

• reconstructing the full dendritic spatiotemporal voltage from noisy,

subsampled observations

• estimating subthreshold voltage given superthreshold spike trains

• extracting spike timing from slow, noisy calcium imaging data

• reconstructing presynaptic conductance from postsynaptic voltage

recordings

• inferring connectivity from large populations of spike trains

• decoding behaviorally-relevant information from spike trains

• optimal control of neural spike timing

— to solve these, we need to combine the two classical branches of

computational neuroscience: dynamical systems and neural coding



Retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008)



Receptive fields tile visual space



Multineuronal point-process model
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Point-process likelihood

λt = f(Xtθ)

log p(nt|Xt, θ) = logPoiss(nt;λtdt) = −f(Xtθ)dt+nt log f(Xtθ)+const.

log p({nt}|X, θ) =
∑

t

log p(nt|Xt, θ).

Key points:

• f convex and log-concave =⇒ log-likelihood concave in θ.

Easy to optimize, so estimating θ is very tractable

(Paninski, 2004; Truccolo et al., 2005).

• Easy to include priors p(θ) if log p(θ) is concave: useful for

smoothing/sparsening estimates





Predicting single-neuron responses
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— model captures high precision of retinal responses.





Nearest-neighbor effective connectivity
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Network vs. stimulus drive

— Network effects are ≈ 50% as strong as stimulus effects



Model captures spatiotemporal cross-corrs





Optimal Bayesian decoding

E(~x|spikes) ≈ argmax~x logP (~x|spikes) = argmax~x [logP (spikes|~x) + logP (~x)]

(Loading yashar-decode.mp4)

— Computational points:

• logP (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of logP (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2009).


Convertified by iSquint - http://www.isquint.org
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Optimal Bayesian decoding

E(~x|spikes) ≈ argmax~x logP (~x|spikes) = argmax~x [logP (spikes|~x) + logP (~x)]

— Computational points:

• logP (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of logP (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2009).

— Biological point: paying attention to correlations improves decoding accuracy.



Application: how important is timing?

— Fast decoding methods let us look more closely (Ahmadian et al., 2009)



Constructing a metric between spike trains

d(r1, r2) ≡ dx (x̂(r1), x̂(r2))

Locally, d(r, r + δr) = δrTGrδr: interesting information in Gr.



Spike sensitivity is strongly context-dependent

— Reflects nonlinearity of decoder x̂(r): linear decoder is context-independent

— Cost of spike addition/deletion ≈ cost of jittering by 10 ms (Victor, 2000):

natural time scale of spike train.



Application: optimal velocity decoding

Bayesian estimate requires us to integrate out unknown image I:

p(v|spikes) ∝ p(v)p(spikes|v) = p(v)

∫
p(I)p(spikes|v, I)dI;

(Frechette et al., 2005; Lalor et al., 2009)



Application: image stabilization

(Loading rossi-roorda.avi)

— from (Rossi and Roorda ’09): quite a bit of motion in 1 sec.


rossi-roorda.avi
Media File (video/avi)



Bayesian methods for image stabilization

Have to integrate out random eye movements:

p(I|spikes) ∝ p(I)p(spikes|I) = p(I)

∫

p(spikes|e, I)p(e)de;

e denotes eye path; integration by particle-filter methods.
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Next steps: reconsidering the model



Considering common input effects





Extension: including common input effects



Direct state-space optimization methods

To fit parameters, optimize approximate marginal likelihood:

log p(spikes|θ) = log

∫

p(Q|θ)p(spikes|θ,Q)dQ

≈ log p(Q̂θ|θ) + log p(spikes|Q̂θ)−
1

2
log |JQ̂θ

|

Q̂θ = argmax
Q

{log p(Q|θ) + log p(spikes|Q)}

— Q is a very high-dimensional latent (unobserved) “common

input” term. Taken to be a Gaussian process here with

autocorrelation time ≈ 5 ms (Khuc-Trong and Rieke, 2008).

— correlation strength specified by one parameter per cell pair.

— all terms can be computed in O(T ) via banded matrix

methods (Paninski et al., 2009).



Inferred common input effects are strong
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— note that inferred direct coupling effects are now relatively small.



Common-input-only model captures x-corrs



Decoding the stimulus and hidden input

argmax~x p(~x|y, θ) = argmax~x
∫

p(~x,Q|y, θ)dQ ≈ argmax~x,Q p(~x,Q|y, θ)



Models lead to similar decoding performance

...but CI model is more robust to spike jitter and deletions (Vidne et al. 2010).



Next steps: inferring cones

— cone locations and color identity can be inferred accurately with high

spatial-resolution stimuli via maximum a posteriori estimates.





Next steps: inferring circuitry?



Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between encoding and decoding

(Paninski et al., 2007)

• Log-concavity, banded matrix methods make computations

very tractable

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas
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