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The neural code

Input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural variables y (spike trains, population activity...)

Probabilistic formulation: p(y|x)



Retinal ganglion neuronal data

Preparation: dissociated salamander and macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal “flicker” visual stimuli



Multineuronal generalized linear model

— Fit by L1-penalized max. likelihood (concave optimization)







Nearest-neighbor connectivity
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Network vs. stimulus drive

— Network effects are ≈ 50% as strong as stimulus effects





Network predictability analysis





Model captures spatiotemporal cross-corrs









Optimal Bayesian decoding

— Compute E(stim|resp) via MCMC under each model

— Including network terms mproves decoding accuracy.



Next: Large-scale network modeling

— Do observed local connectivity rules lead to interesting

network dynamics? What are the implications for retinal

information processing?
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Fitting coupling terms exposes smaller

receptive fields




