## A new look at state-space models for neural data

#### Liam Paninski

Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/~liam *liam@stat.columbia.edu* May 16, 2010

Support: CRCNS, Sloan Fellowship, NSF CAREER, McKnight Scholar award.

## State-space models

- Unobserved state  $q_t$  with Markov dynamics  $p(q_{t+1}|q_t)$  (i.e.,  $q_t$  is a noisy dynamical system)
- Observed  $y_t$ :  $p(y_t|q_t)$  (noisy, partial observations)
- Goal: infer  $p(q_t|Y_{0:T})$

Dozens of applications in neuroscience (Paninski et al., 2010).

#### Example: nonstationary spike sorting



 $q_t$ : mean waveform;  $y_t$ : observed spikes (Calabrese '10); data from (Harris et al., 2000)

#### Basic paradigm: the forward recursion

We want  $p(q_t|Y_{1:t}) \propto p(q_t, Y_{1:t})$ . We know that

$$p(Q, Y) = p(Q)p(Y|Q) = p(q_1) \left(\prod_{t=2}^{T} p(q_t|q_{t-1})\right) \left(\prod_{t=1}^{T} p(y_t|q_t)\right)$$

To compute  $p(q_t, Y_{1:t})$  recursively, just write out marginal and pull out constants from the integrals:

$$p(q_t, Y_{1:t}) = \int_{q_1} \int_{q_2} \dots \int_{q_{t-1}} p(Q_{1:t}, Y_{1:t}) = \int_{q_1} \int_{q_2} \dots \int_{q_{t-1}} p(q_1) \left( \prod_{i=2}^t p(q_i | q_{i-1}) \right) \left( \prod_{i=1}^t p(y_i | q_i) \right)$$
$$= p(y_t | q_t) \int_{q_{t-1}} p(q_t | q_{t-1}) p(y_{t-1} | q_{t-1}) \int_{q_{t-2}} \dots \int_{q_2} p(q_3 | q_2) p(y_2 | q_2) \int_{q_1} p(q_2 | q_1) p(y_1 | q_1) p(q_1) dq_1$$

So, just recurse

$$p(q_t, Y_{1:t}) = p(y_t | q_t) \int_{q_{t-1}} p(q_t | q_{t-1}) p(q_{t-1}, Y_{1:t-1}).$$

Linear-Gaussian (Kalman) case: requires  $O(\dim(q)^3 T)$  time; just matrix algebra. Approximate solutions in more general case, e.g., Gaussian approximations (Brown et al., 1998), or Monte Carlo ("particle filtering").

Key point: efficient recursive computations  $\implies O(T)$  time.

#### Computing the MAP path

We often want to compute the MAP estimate

$$\hat{Q} = \arg\max_{Q} p(Q|Y).$$

In standard Kalman setting, forward-backward gives MAP (because E(Q|Y) and  $\hat{Q}$  coincide in Gaussian case).

More generally, extended Kalman-based methods give approximate MAP, but are non-robust: forward distribution  $p(q_t|Y_{0:t})$  may be highly non-Gaussian even if full joint distribution p(Q|Y) is nice and unimodal. Write out the posterior:

$$\log p(Q|Y) = \log p(Q) + \log p(Y|Q)$$
$$= \sum_{t} \log p(q_{t+1}|q_t) + \sum_{t} \log p(y_t|q_t)$$

Two basic observations:

- If  $\log p(q_{t+1}|q_t)$  and  $\log p(y_t|q_t)$  are concave, then so is  $\log p(Q|Y)$ .
- Hessian H of  $\log p(Q|Y)$  is block-tridiagonal:  $p(y_t|q_t)$  contributes a block-diag term, and  $\log p(q_{t+1}|q_t)$  contributes a block-tridiag term.

Now recall Newton's method: iteratively solve  $HQ_{dir} = \nabla$ . Solving tridiagonal systems requires O(T) time.

— computing MAP by Newton's method requires O(T) time, even in highly non-Gaussian cases.

Newton here acts as an iteratively reweighted Kalman smoother (Fahrmeir and Kaufmann, 1991; Davis and Rodriguez-Yam, 2005; Jungbacker and Koopman, 2007); all suff. stats may be obtained in O(T) time.

#### **Constrained optimization**

In many cases we need to impose constraints (e.g., nonnegativity) on  $q_t$ . Easy to incorporate here, via interior-point (barrier) methods:

$$\arg \max_{Q \in C} \log p(Q|Y) = \lim_{\epsilon \searrow 0} \arg \max_{Q} \left\{ \log p(Q|Y) + \epsilon \sum_{t} f(q_{t}) \right\}$$
$$= \lim_{\epsilon \searrow 0} \arg \max_{Q} \left\{ \sum_{t} \log p(q_{t+1}|q_{t}) + \log p(y_{t}|q_{t}) + \epsilon f(q_{t}) \right\};$$

f(.) is concave and approaching  $-\infty$  near boundary of constraint set C. The Hessian remains block-tridiagonal and negative semidefinite for all  $\epsilon > 0$ , so optimization still requires just O(T) time.

# Example: computing the MAP subthreshold voltage given superthreshold spikes

Leaky, noisy integrate-and-fire model:

$$V(t+dt) = V(t) - dt V(t) / \tau + \sigma \sqrt{dt} \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0,1)$$

Observations:  $y_t = 0$  (no spike) if  $V_t < V_{th}$ ;  $y_t = 1$  if  $V_t = V_{th}$ 



(Paninski, 2006)

#### Example: inferring presynaptic input

$$I_{t} = \sum_{j} g_{j}(t)(V_{j} - V_{t})$$
$$g_{j}(t + dt) = g_{j}(t) - dtg_{j}(t)/\tau_{j} + N_{j}(t), N_{j}(t) > 0$$



## Example: inferring spike times from slow, noisy calcium data



— nonnegative deconvolution is a recurring problem in signal processing; many other possible applications (Vogelstein et al., 2008).

#### Optimal control of spike timing

Optimal experimental design and neural prosthetics applications require us to perturb the network at will. How can we make a neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

$$\lambda_t = f(\vec{k} * I_t + h_t).$$

Now we can just optimize the likelihood of the desired spike train, as a function of the input  $I_t$ , with  $I_t$  bounded.

Concave objective function over convex set of possible inputs  $I_t$ + Hessian is banded  $\implies O(T)$  optimization.

#### Optimal electrical control of spike timing



#### Example: intracellular control of spike timing



(Ahmadian et al 2010)



## Conclusions

- GLM and state-space approaches provide flexible, powerful methods for answering key questions in neuroscience
- Close relationships between forward-backward methods familiar from state-space theory and banded matrices familiar from spline theory
- Log-concavity, banded matrix methods make computations very tractable

#### References

- Brown, E., Frank, L., Tang, D., Quirk, M., and Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18:7411-7425.
- Davis, R. and Rodriguez-Yam, G. (2005). Estimation for state-space models: an approximate likelihood approach. *Statistica Sinica*, 15:381–406.
- Fahrmeir, L. and Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. *Metrika*, 38:37–60.
- Harris, K., Henze, D., Csicsvari, J., Hirase, H., and Buzsaki, G. (2000). Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophys., 84:401-414.
- Jungbacker, B. and Koopman, S. (2007). Monte Carlo estimation for nonlinear non-Gaussian state space models. *Biometrika*, 94:827–839.
- Paninski, L. (2006). The most likely voltage path and large deviations approximations for integrate-and-fire neurons. *Journal of Computational Neuroscience*, 21:71–87.
- Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama, K., Vidne, M., Vogelstein, J., and Wu, W. (2010). A new look at state-space models for neural data. *Journal of Computational Neuroscience*, In press.
- Vogelstein, J., Babadi, B., Watson, B., Yuste, R., and Paninski, L. (2008). Fast nonnegative deconvolution via tridiagonal interior-point methods, applied to calcium fluorescence data. Statistical analysis of neural data (SAND) conference.