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The coming statistical neuroscience decade

Some notable recent developments:

• machine learning / statistics methods for extracting

information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing)

• optical methods (eg two-photon, FLIM) and optogenetics

(channelrhodopsin, viral tracers, brainbow)

• high-density multielectrode recordings (Litke’s 512-electrode

retinal readout system; Shepard’s 65,536-electrode active

array)



Some exciting open challenges

• inferring biophysical neuronal properties from noisy recordings

• reconstructing the full dendritic spatiotemporal voltage from noisy,

subsampled observations

• estimating subthreshold voltage given superthreshold spike trains

• extracting spike timing from slow, noisy calcium imaging data

• reconstructing presynaptic conductance from postsynaptic voltage

recordings

• inferring connectivity from large populations of spike trains

• decoding behaviorally-relevant information from spike trains

• optimal control of neural spike timing

— to solve these, we need to combine the two classical branches of

computational neuroscience: dynamical systems and neural coding



Part 1: modeling correlated spiking in retina

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008)



Receptive fields tile visual space



Multineuronal point-process model
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— likelihood is easy to compute and to maximize (concave optimization)

(Paninski, 2004; Paninski et al., 2007; Pillow et al., 2008)

— close connections to noisy integrate-and-fire model

— captures spike timing precision and details of spatiotemporal correlations in

retinal ganglion cell network



Reconsidering the model



Considering common input effects

— universal problem in network analysis: can’t observe all neurons!





Extension: including common input effects



Direct state-space optimization methods

To fit parameters, optimize approximate marginal likelihood:

log p(spikes|θ) = log

∫
p(Q|θ)p(spikes|θ,Q)dQ

≈ log p(Q̂θ|θ) + log p(spikes|Q̂θ) −
1

2
log |JQ̂θ

|

Q̂θ = arg max
Q

{log p(Q|θ) + log p(spikes|Q)}

— Q is a very high-dimensional latent (unobserved) “common

input” term. Taken to be a Gaussian process here with

autocorrelation time ≈ 5 ms (Khuc-Trong and Rieke, 2008).

— correlation strength specified by one parameter per cell pair.

— all terms can be computed in O(T ) via banded matrix

methods (Paninski et al., 2010).



Inferred common input effects are strong

common input

−2
−1

0
1

−2
−1

0
1

direct coupling input

−2
0
2

stimulus input

−2

−1

0

refractory input

100 200 300 400 500 600 700 800 900 1000

spikes

ms

— note that inferred direct coupling effects are now relatively small.



Common-input-only model captures x-corrs

— single and triple-cell activities captured well, too (Vidne et al., 2009)



Inferring cone locations

— cone locations and color identity can be inferred accurately with high

spatial-resolution stimuli via maximum a posteriori estimates (Field et al., 2010).



Inferring cone-to-RGC effective connectivity



Part 2: applications to cortex



Model-based estimation of spike rates

Note: each component here can be generalized easily (Vogelstein et al., 2009).



Fast maximum a posteriori (MAP) filter

Start by writing out the posterior:

log p(C|F ) = log p(C) + log p(F |C) + const.

=
X

t

log p(Ct+1|Ct) +
X

t

log p(Ft|Ct) + const.

Three basic observations:

• If log p(Ct+1|Ct) and log p(Ft|Ct) are concave, then so is log p(C|F ).

• Hessian H of log p(C|F ) is tridiagonal: log p(Ft|Ct) contributes a diag term,

and log p(Ct+1|Ct) contributes a tridiag term (Paninski et al., 2010).

• C is a linear function of n.

Newton’s method: iteratively solve HCdir = ∇. Tridiagonal solver requires O(T )

time. Can include nonneg constraint nt ≥ 0 (Koyama and Paninski, 2009).

— Two orders of magnitude faster than particle filter: can process data from

≈ 100 neurons in real time on a laptop (Vogelstein et al., 2010).



Example: nonnegative MAP filtering

— nonnegative deconvolution is a recurring problem (Vogelstein et al., 2010)

(e.g., deconvolution of PSPs in intracellular recordings (Paninski et al., 2010))



Simulated circuit inference
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— conductance-based integrate-and-fire networks with biologically plausible connectivity

matrices, imaging speed, SNR (Mishchencko et al., 2009).

Good news: MAP connections are inferred with the correct sign, in just a couple

minutes of compute time, if network is fully observed. Current work focusing on

improved Monte Carlo sampling methods, to better quantify uncertainty in

unobserved neurons (Mishchenko and Paninski, 2010).



Optimal control of spike timing

To test our results, we want to perturb the network at will.

How can we make a neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(Vt + ht)

Vt+dt = Vt + dt (−gVt + aIt) +
√

dtσǫt, ǫt ∼ N (0, 1).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It

+ Hessian is tridiagonal =⇒ O(T ) optimization.

— again, can be done in real time (Ahmadian et al., 2010).



Simulated electrical control of spike timing
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Example: intracellular control of spike timing
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Optical conductance-based control of spiking

Vt+dt = Vt + dt
“

−gVt + g
i
t(V

i − Vt) + g
e
t (V e − Vt)

”

+
√

dtσǫt, ǫt ∼ N (0, 1)

g
i
t+dt = g

i
t + dt

„

−gi
t

τi

+ aiiL
i
t + aieL

e
t

«

; g
e
t+dt = g

e
t + dt

„

−ge
t

τi

+ aeeL
e
t + aeiL

i
t

«

0 20 40 60 80 100 120 140 160 180 200

ta
rg

et
 s

pi
ke

 tr
ai

n

0 20 40 60 80 100 120 140 160 180 200
−70

−60

−50

V
ol

ta
ge

0 20 40 60 80 100 120 140 160 180 200
0

10

20

Li
gh

t i
nt

en
si

ty

 

 
E
I

0 20 40 60 80 100 120 140 160 180 200in
du

ce
d 

sp
ik

e 
tr

ai
ns

time(ms)



Part 3: spatiotemporal filtering on dendrites

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.

(Djurisic et al., 2004; Knopfel et al., 2006)



Basic paradigm: the Kalman filter

Variable of interest, qt, evolves according to a noisy differential

equation (Markov process):

dq/dt = f(qt) + ǫt.

Make noisy observations:

yt = g(qt) + ηt.

We want to infer E(qt|Y ): optimal estimate given observations.

Problem: Kalman filter requires O(d3T ) time (d = dim(q)).

Reduction to O(dT ): exploit tree structure of dendrite

(Paninski, 2010). Can be applied to voltage- or

calcium-sensitive imaging data (Pnevmatikakis et al, 2010).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_speckle.mp4
Media File (video/mp4)



Example: summed observations

(Loading low-rank-horiz.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_horiz.mp4
Media File (video/mp4)



Applications

• Optimal experimental design: which parts of the neuron

should we image? (Huggins and Paninski, 2010)

• Estimation of biophysical parameters (e.g., membrane

channel densities, axial resistance, etc.): reduces to a simple

nonnegative regression problem once V (x, t) is known

(Huys et al., 2006)

• Detecting location and weights of synaptic input

(Huggins and Paninski, 2011)



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) + W ~U(t) + ~ǫ(t);

Uj(t) = known input terms.

Example: U(t) are known presynaptic spike times, and we want

to detect which compartments are connected (i.e., infer the

weight matrix W ).



Detecting synapses
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(Paninski et al., 2010; Huggins and Paninski, 2011)



Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Concave optimizations, banded matrix methods make

computations very tractable — real-time, in many cases

• Co-development of experiment and analysis: exciting time

for statistical neuroscience
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