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Retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008)



Receptive fields tile visual space



Multineuronal point-process model
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)

,

— GLM; fit by L1-penalized maximum likelihood (concave optimization)

(Paninski, 2004; Truccolo et al., 2005; Pillow et al., 2008)



Model captures spatiotemporal cross-corrs



Optimal Bayesian decoding

E(~x|spikes) ≈ arg max~x log P (~x|spikes) = arg max~x [log P (spikes|~x) + log P (~x)]

— Computational points:

• log P (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of log P (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2009).

— Biological point: paying attention to correlations improves decoding accuracy.



Application: how important is timing?

— Fast decoding methods let us look more closely (Ahmadian et al., 2009)



Spike sensitivity is strongly context-dependent

— Reflects nonlinearity of decoder x̂(r): linear decoder is context-independent

— Cost of spike addition/deletion ≈ cost of jittering by 10 ms (Victor, 2000):

natural time scale of spike train.



Application: image stabilization

From (Pitkow et al., 2007): neighboring letters on the 20/20 line of the Snellen eye

chart. Trace shows 500 ms of eye movement.



Bayesian methods for image stabilization

Have to marginalize out random eye movements:

p(I|spikes) ∝ p(I)p(spikes|I) = p(I)

∫

p(spikes|e, I)p(e)de;

e denotes eye path; integration by particle-filter methods.

true image w/ translations; observed noisy retinal responses; estimated image.



Reconsidering the model



Considering common input effects





Extension: including common input effects



Direct state-space optimization methods

To fit parameters, optimize approximate marginal likelihood:

log p(spikes|θ) = log

∫

p(Q|θ)p(spikes|θ,Q)dQ

≈ log p(Q̂θ|θ) + log p(spikes|Q̂θ) −
1

2
log |JQ̂θ

|

Q̂θ = arg max
Q

{log p(Q|θ) + log p(spikes|Q)}

— Q is a very high-dimensional latent (unobserved) “common

input” term. Taken to be a Gaussian process here with

autocorrelation time ≈ 5 ms (Khuc-Trong and Rieke, 2008).

— correlation strength specified by one parameter per cell pair.

— all terms can be computed in O(T ) via banded matrix

methods (Paninski et al., 2009).



Inferred common input effects are strong
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Common-input-only model captures x-corrs



Decoding the stimulus and hidden input

arg max~x p(~x|y, θ) = arg max~x

∫

p(~x, Q|y, θ)dQ ≈ arg max~x,Q p(~x, Q|y, θ)



Models lead to similar decoding performance

...but CI model is more robust to spike jitter and deletions.



Next steps: inferring cones

— cone locations and color identity can be inferred accurately

via maximum a posteriori estimates.





Next steps: inferring circuitry?
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