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The neural code

Basic goal: infer input-output relationship between

• External observables x (sensory stimuli, motor responses...)

• Neural responses r (spike trains, population activity...)

— many basic mechanisms are well-understood up to some

unknown parameters: infer p(r|x, θ).



Several levels of neural data analysis

• “Subcellular” level: measurements of intracellular voltage or

ionic concentrations (intracellular “patch” electrodes,

two-photon imaging)

• “Circuit” level: electrical activity of single neurons or small

groups of isolated neurons (multi-electrode recordings,

calcium-sensitive microscopy)

• “Systems” level: blood flow or other indirect measurements

of electrical activity in coarsely-defined brain areas (fMRI,

EEG, MEG...)



Three challenges

1. Reconstructing the full spatiotemporal voltage on a

dendritic tree given noisy, intermittently-sampled subcellular

measurements

2. Decoding behaviorally-relevant information from multiple

neuronal responses

3. Inferring circuit connectivity from large populations of

noisily-observed responses



The filtering problem

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.

(Djurisic et al., 2004; Knopfel et al., 2006)



Basic paradigm: compartmental models

• write neuronal dynamics in terms of equivalent nonlinear, time-varying

RC circuits (Koch, 1999)

• leads to a coupled system of stochastic differential equations



Basic paradigm: the Kalman filter

Variable of interest, qt, evolves according to a noisy differential

equation (Markov process):

dq/dt = f(qt) + ǫt.

Make noisy observations:

yt = g(qt) + ηt.

We want to infer E(qt|Y ): optimal estimate given observations.

If f(.) and g(.) are linear, and ǫt and ηt are Gaussian, then

solution is classical: Kalman filter. More general problems:

particle filter (Huys and Paninski, 2009).

Basic Kalman filter requires O(dim(q)3T ) time. Reduction to

O(dim(q)T ) by exploiting tree structure of dendrite

(Paninski, 2009).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_speckle.mp4
Media File (video/mp4)



Example: summed observations

(Loading low-rank-horiz.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_horiz.mp4
Media File (video/mp4)



Application: inferring biophysical parameters

Given the spatiotemporal voltage V (x, t), it turns out that we can estimate

these biophysical parameters via standard convex nonnegative regression

methods (Huys and Paninski, 2009).



Part 2: modeling spike trains

p(rt = 1) = λtdt

λt = f(~k · ~xt +
∑

j

ajrt−j)

Generalized linear model: log-likelihood is concave =⇒ easy to

estimate parameters via maximum likelihood.



Predicting songbird auditory responses

(Calabrese, Schneider, Woolley et al. 2009)



Application: fast optimal decoding
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Concave optimization: log p(~x|r, ~θ) = log p(r|~x, ~θ) + log p(~x) w.r.t. ~x.

Banded Hessian =⇒ fast computation: O(T ) time (Pillow et al., 2009).



Decoding a full song



Application: optimal stimulus design

Idea: we have full control over the stimuli we present. Can we

choose stimuli ~xt to maximize the informativeness of each trial?

— More quantitatively, optimize I(rt; θ|~xt) with respect to ~xt.

Maximizing I(rt; θ; ~xt) =⇒ minimizing uncertainty about θ.

In general, very hard to do: high-d integration over θ to

compute I(rt; θ|~xt), high-d optimization to select best ~xt.

GLM setting + low-rank matrix methods make this surprisingly

tractable: O(dim(θ)2) computation (Lewi et al., 2009).



Application to songbird data: choosing an

optimal stimulus sequence

— infomax speeds convergence by a factor of three or more.



Part 3: circuit inference



Challenge: slow, noisy calcium data

First-order model:

Ct+dt = Ct − dtCt/τ + Nt; Nt > 0; yt = Ct + ǫt

— τ ≈ 100 ms; nonnegative deconvolution problem. Can be solved by O(T )

relaxed constrained optimization methods (Vogelstein et al., 2008) or sequential

Monte Carlo (Vogelstein et al., 2009).



Particle filter can extract spikes from

saturated recordings

— saturation model: yt = g(Ct) + ǫt (Vogelstein et al., 2009)



Simulated circuit inference
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— Connections are inferred with the correct sign in conductance-based integrate-and-fire

networks with biologically plausible connectivity matrices (Mishchencko et al., 2009).



Last example: optimal control of spike timing

Optimal experimental design and neural prosthetics applications

require us to perturb the network at will. How can we make a

neuron fire exactly when we want it to?

Inputs are constrained: bounds on injected current magnitude,

or laser power.

Start with a simple model:

λt = f(~k ∗ It + ht).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function + convex set of inputs It + Hessian

is banded =⇒ O(T ) optimization (Ahmadian et al., 2009).



Optimal electrical control of spike timing
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Simulated data; experiments in progress...



Optical conductance-based control of spiking
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Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between encoding, decoding, and

experimental design (Paninski et al., 2007)

• Log-concavity, banded matrix methods make computations

very tractable

• Experimental methods progressing rapidly; many new

challenges and opportunities for applications of statistical

ideas
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