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A golden age of statistical neuroscience

Some notable recent developments:

• machine learning / statistics / optimization methods for

extracting information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing)

• optical and optogenetic methods for recording from and

perturbing neuronal populations, at multiple scales

• large-scale, high-density multielectrode recordings



A few grand challenges

• Optimal decoding and dimensionality reduction of

large-scale multineuronal spike train data

• Circuit inference from multineuronal spike train data

• Optimal control of spike timing in large neuronal populations

• Hierarchical nonlinear models for encoding information in

neuronal populations

• Robust, expressive neural prosthetic design

• Understanding dendritic computation and

location-dependent synaptic plasticity via optical imaging

(statistical spatiotemporal signal processing on trees)



Example: neural prosthetics



Example: neural prosthetics

(Loading monkey-zombies.mp4)

w/ B. Pesaran (NYU), D. Pfau, J. Merel


monkey-zombies.mp4
Media File (video/mp4)



Example: modeling the output of the retina

Preparation: dissociated macaque retina (Chichilnisky lab, Salk)

— extracellularly-recorded responses of populations of retinal ganglion

neurons



Sampling the complete receptive field mosaic



Multineuronal point-process model

— likelihood is tractable to compute and to maximize (concave optimization)

(Paninski, 2004; Paninski et al., 2007; Pillow et al., 2008; Paninski et al., 2010)



Network model predicts correlations correctly

— single and triple-cell activities captured as well (Vidne et al., 2009)



Optimal Bayesian decoding

— properly modeling correlations improves decoding accuracy (Pillow et al., 2008).

— further applications: decoding velocity signals (Lalor et al., 2009); tracking images

perturbed by eye jitter (Pfau et al., 2009); retinal prosthetics (Ahmadian et al., 2011)

— convex optimization approach requires just O(T ) time. Open challenge: real-time decoding

/ optimal control of large populations



Inferring cone maps

— cone locations and color identity inferred accurately with high-resolution

stimuli; Bayesian hierarchical approach integrates information over multiple

simultaneously recorded neurons (Field et al., 2010).



Opportunity: hierarchical models
More general idea: sharing information across multiple simultaneously-recorded

cells can be very useful (Sadeghi et al, 2012).

Open challenge: extension to richer nonlinear models (J. Merel, E. Pnevmatikakis, J.

Freeman, E. Simoncelli, A. Ramirez, ongoing)



Opportunity: hierarchical models

More general idea: sharing information across multiple simultaneously-recorded

cells can be very useful. Exploit location, genetic markers, other information to

extract more information from noisy data.

Ohki ‘06



Opportunity: hierarchical models
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Scalable convex edge-preserving neighbor-penalized likelihood methods; K.

Rahnama Rad, C. Smith, G. Lacerda, ongoing



Dimensionality reduction; inferring hidden dynamics

Dynamic generalized factor analysis model: qt evolves according to a simple linear

dynamical system, with “kicks.” Log-firing rates modeled as linear functions of

qt. Convex rank-penalized optimization methods to infer qt given spike train.

Open challenge: richer nonlinear models. E. Pnevmatikakis and D. Pfau, ongoing



Circuit inference from large-scale Ca2+ imaging

w/ R. Yuste, K. Shepard, Y. Ahmadian, J. Vogelstein, Y. Mishchenko, B. Watson, A. Murphy



Challenge: slow, noisy calcium data

First-order model:

Ct+dt = Ct − dtCt/τ + rt; rt > 0; yt = Ct + ǫt

— τ ≈ 100 ms; nonnegative deconvolution problem. Interior-point approach leads to

O(T ) solution (Vogelstein et al., 2009; Vogelstein et al., 2010; Mishchenko et al., 2010).



Spatiotemporal Bayesian spike estimation

(Loading Tim-data0b2.mp4)

Rank-penalized convex optimization with nonnegativity constraints. E.

Pnevmatikakis and T. Machado, ongoing


Tim-data0b2.mp4
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Simulated circuit inference
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Good news: connections are inferred well in biologically-plausible simulations

(Mishchencko et al., 2009), if most neurons in circuit are observable. Fast enough

to estimate connectivity in real time (T. Machado). Preliminary experimental

results are encouraging (correct identification checked w/ intracellular recordings).

Open challenge: method is non-robust when smaller fractions of the network are

observable. Massive hidden data problem. Some progress in (Vidne et al., 2009),

but remains open for new ideas.



A final challenge: understanding dendrites

Ramon y Cajal, 1888.



A spatiotemporal filtering problem

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.



Basic paradigm: compartmental models

• write neuronal dynamics in terms of equivalent nonlinear, time-varying

RC circuits

• leads to a coupled system of stochastic differential equations



Inference of spatiotemporal neuronal state

given noisy observations

Variable of interest, Vt, evolves according to a noisy differential equation (e.g.,

cable equation):

dV/dt = f(V ) + ǫt.

Make noisy observations:

y(t) = g(Vt) + ηt.

We want to infer E(Vt|Y ): optimal estimate given observations. We also want

errorbars: quantify how much we actually know about Vt.

If f(.) and g(.) are linear, and ǫt and ηt are Gaussian, then solution is classical:

Kalman filter. (Many generalizations available; e.g., (Huys and Paninski, 2009).)

Even Kalman case is challenging, since d = dim(~V ) is very large: computation of

Kalman filter requires O(d3) computation per timestep

(Paninski, 2010): methods for Kalman filtering in just O(d) time: take advantage

of sparse tree structure.



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR

observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can

approximate Kalman covariance Ct = cov(qt|Y1:t) as a perturbation of the

marginal covariance C0 + UtDtU
T
t , with C0 = limt→∞ cov(qt).

C0 is the solution to a Lyapunov equation. It turns out that we can solve

linear equations involving C0 in O(dim(q)) time via Gaussian belief

propagation, using the fact that the dendrite is a tree.

The necessary recursions — i.e., updating Ut, Dt and the Kalman mean

E(qt|Y1:t) — involve linear manipulations of C0, using

Ct = [(ACt−1A
T + Q)−1 + Bt]

−1

C0 + UtDtU
T

t =
(

[A(C0 + Ut−1Dt−1U
T

t−1)A
T + Q]−1 + Bt

)

−1
,

and can be done in O(dim(q)) time (Paninski, 2010). Generalizable to

many other state-space models (Pnevmatikakis and Paninski, 2011).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)


Convertified by iSquint - http://www.isquint.org
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Applications

• Optimal experimental design: which parts of the neuron

should we image? Submodular optimization

(Huggins and Paninski, 2011)

• Estimation of biophysical parameters (e.g., membrane

channel densities, axial resistance, etc.): reduces to a simple

nonnegative regression problem once V (x, t) is known

(Huys et al., 2006)

• Detecting location and weights of synaptic input



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) + W ~U(t) + ~ǫ(t);

U(t) are known presynaptic spike times, and we want to detect which

compartments are connected (i.e., infer the weight matrix W ).

Loglikelihood is quadratic; W is a sparse vector. Adapt standard LARS-like

(homotopy) approach (Pakman et al., 2012).

Total computation time: O(dTk); d = # compartments, T = # timesteps, k = #

nonzero weights.



Example: inferring dendritic synaptic maps

700 timesteps observed; 40 compartments (of > 2000) observed per timestep

Note: random access scanning essential here: results are poor if we observe the

same compartments at each timestep. “Compressed sensing” observations

improve results further.



Conclusions

• Modern statistical approaches provide flexible, powerful

methods for answering key questions in neuroscience. Many

neuroscience problems are actually statistics problems,

thinly disguised.

• Close relationships between biophysics and statistical

modeling

• Modern optimization methods make computations very

tractable; suitable for closed-loop experiments

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas. Rich open ground for collaboration between

neuroscience, statistics, CS, optimization theory, . . .
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