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State-space models

Unobserved state qt with Markov dynamics p(qt+1|qt)

Observed yt: p(yt|qt)

Goal: infer p(qt|Y0:T )

Exact solutions: finite state-space HMM, Kalman filter (KF):

forward-backward algorithm (recursive; O(T ) time)

Approximate solutions: extended KF, particle filter, etc.... basic

idea: recursively update an approximation to “forward”

distribution p(qt|Y0:t)



Example: image stabilization

From (Pitkow et al., 2007): neighboring letters on the 20/20 line of the Snellen eye

chart. Trace shows 500 ms of eye movement.



A state-space method for image stabilization

Assume image I(~x) is fixed; ~qt = the (unknown) eye position.

Simple random-walk dynamics for qt: qt+1 = qt + e, e i.i.d.

Image falling on retina at point ~x: It(~x) = I(~x − qt).

Goal: infer p(I|Y0:T ). Initialize: prior p(I). Now recurse:

• dynamics step:

p(It|Y0:t) → p(It+1|Y0:t) =
∫

Se [p(It|Y0:t)] p(e)de (mixture)

• observation step: p(It+1|Y0:t+1) = p(It+1|Y0:t)p(yt+1|It+1)

• do a greedy merge to make sure number of mixture

components stays bounded

Now we just need a model for p(yt+1|It+1)...



Multineuronal generalized linear model

λi(t) = f

(

bi + ~ki · It +
∑

j,τ

hi,jnj(t − τ)

)

; θ = (bi, ~ki, hij)

— log p(Y |I, θ) is concave in both θ and I (Pillow et al., 2008).



Simulated example: image stabilization

true image w/ translations; observed noisy retinal responses; estimated image.

Questions: how much high-frequency information can we recover? What is effect

of nonlinear spiking response (Rucci et al., 2007)?



Computing the MAP path

We often want to compute the MAP estimate

Q̂ = arg max
Q

p(Q|Y ).

In standard Kalman setting, forward-backward gives MAP

(because E(Q|Y ) and Q̂ coincide in Gaussian case).

More generally, extended Kalman-based methods give

approximate MAP, but are non-robust: forward distribution

p(qt|Y0:t) may be highly non-Gaussian even if full joint

distribution p(Q|Y ) is nice and log-concave.



Write out the posterior:

log p(Q|Y ) = log p(Q) + log p(Y |Q)

=
X

t

log p(qt+1|qt) +
X

t

log p(yt|qt)

Two basic observations:

• If log p(qt+1|qt) and log p(yt|qt) are concave, then so is log p(Q|Y ).

• Hessian H of log p(Q|Y ) is block-tridiagonal: p(yt|qt) contributes a

block-diag term, and log p(qt+1|qt) contributes a block-tridiag term.

Now recall Newton’s method: iteratively solve HQdir = ∇. Solving tridiagonal

systems requires O(T ) time.

— computing MAP by Newton’s method requires O(T ) time, even in highly

non-Gaussian cases.

(Newton here acts as an iteratively reweighted Kalman smoother

(Davis and Rodriguez-Yam, 2005; Jungbacker and Koopman, 2007); all suff. stats

may be obtained in O(T ) time. Similar results also well-known for expectation

propagation (Ypma and Heskes, 2003; Yu and Sahani, 2007).)



Comparison on simulated soft-threshold leaky

integrate-and-fire data

Model: dVt = −(Vt/τ)dt + σdBt; λ(t) = f(Vt).

— extended Kalman-based methods are best in high-information (low-noise)

limit, where Gaussian approximation is most accurate (Koyama et al., 2008).



Parameter estimation

Standard method: Expectation-Maximization (EM). Iterate between computing

E(Q|Y ) (or Q̂) and maximizing w.r.t. parameters θ.

Can be seen as coordinate ascent (slow) on first two terms of Laplace

approximation:

log p(Y |θ) = log

Z

p(Q|θ)p(Y |θ, Q)dQ

≈ log p(Q̂θ|θ) + log p(Y |Q̂θ, θ) − 1

2
log |HQ̂θ

|

Q̂θ = arg max
Q

{log p(Q|θ) + log p(Y |Q, θ)}

Better approach: simultaneous joint optimization. Main case of interest:

λi(t) = f

2

4b + ~ki · ~x(t) +
X

i′,j

hi′,jni′(t − j) + qi(t)

3

5

= f [Xtθ + qi(t)]

~qt+dt = ~qt + A~qtdt + σ
√

dt~ǫt



More generally, assume qt has an AR(p) prior and the observations yt are

members of a canonical exponential family with parameter Xtθ + qt.

We want to optimize

log p(Q̂θ|θ) + log p(Y |Q̂θ, θ) − 1

2
log |HQ̂θ

|

w.r.t. θ. If we drop the last term, we have a simple jointly concave optimization:

θ̂ = arg max
θ

n

log p(Q̂θ|θ) + log p(Y |Q̂θ, θ)
o

= arg max
θ

max
Q

n

log p(Q̂|θ) + log p(Y |Q̂, θ)
o

.

Write the joint Hessian in (Q, θ) as

0

@

Hθθ HT
θQ

HθQ HQQ

1

A, with HQQ block-tridiag.

Now use the Schur complement to efficiently compute the Newton step.

Computing ∇θ log |HQ̂θ
| also turns out to be easy (O(T ) time) here.



Constrained optimization

In many cases we need to impose (e.g., nonnegativity) constraints on qt. Easy to

incorporate here, via interior-point (barrier) methods:

arg max
Q∈C

log p(Q|Y ) = lim
ǫց0

arg max
Q

(

log p(Q|Y ) + ǫ
X

t

f(qt)

)

= lim
ǫց0

arg max
Q

(

X

t

log p(qt+1|qt) + log p(yt|qt) + ǫf(qt)

)

;

f(.) is concave and approaching −∞ near boundary of constraint set C. The

Hessian remains block-tridiagonal and negative semidefinite for all ǫ > 0, so

optimization still requires just O(T ) time.



Example: computing the MAP subthreshold

voltage given superthreshold spikes

Leaky, noisy integrate-and-fire model:

V (t + dt) = V (t) − dtV (t)/τ + σ
√

dtǫt, ǫt ∼ N (0, 1)

Observations: yt = 0 (no spike) if Vt < Vth; yt = 1 if Vt = Vth

(Paninski, 2006)



Example: inferring presynaptic input

It =
X

j

gj(t)(Vj − Vt)

gj(t + dt) = gj(t) − dtgj(t)/τj + Nj(t), Nj(t) > 0
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Example: inferring spike times from slow,

noisy calcium data

C(t + dt) = C(t) − dtC(t)/τ + Nt; Nt > 0; yt = Ct + ǫt

— nonnegative deconvolution is a recurring problem in signal processing (e.g.,

spike sorting); many applications of these fast methods (Vogelstein et al., 2008).



Further generalizations: GLM spike train

decoding

We’ve emphasized tridiagonal structure so far, but similar

results hold for any problem with a banded Hessian.

For example, look at point-process GLM again:

λi(t) = f

[

b + ~ki · ~x(t) +
∑

i′,j

hi′,jni′(t − j)

]

If the spatiotemporal filter ~ki has a finite impulse response, then

Hessian (w.r.t. ~x(t)) is banded and optimal decoding of stimulus

~x(t) requires O(T ) time.

Similar speedups for MCMC methods (Ahmadian et al., 2008).



How important is timing?

(Ahmadian et al., 2008)



Coincident spike are more “important”



Constructing a metric between spike trains

d(r1, r2) ≡ dx(x1, x2)

Locally, d(r, r + δr) = δrT Grδr: interesting information in Gr.



Effects of jitter on spike trains

Look at degradations as we add Gaussian noise with covariance:

• α∗: C ∝ G−1 (optimal: minimizes error under constraint on |C|)

• α1: C ∝ diag(G)−1 (perturb less important spikes more)

• α2: C ∝ blkdiag(G)−1 (perturb spikes from different cells independently)

• α3: C ∝ I (simplest)

— Non-correlated perturbations are more costly.

Can also add/remove spikes: cost of spike addition ≈ cost of jittering by 10 ms.



One last extension: two-d smoothing

Estimation of two-d firing rate surfaces comes up in a number of examples:

• place fields / grid cells

• post-fitting in spike-triggered covariance analysis

• tracking of non-stationary (time-varying) tuning curves

• “inhomogeneous Markov interval” models for spike-history dependence

How to generalize fast 1-d state-space methods to 2-d case? Idea: use Gaussian

process priors which are carefully selected to give banded Hessians.

Model: hidden variable Q is a random surface with a Gaussian prior:

Q ∼ N (µ, C);

Spikes are generated by a point process whose rate is a function of Q:

λ(~x) = f [Q(~x)] (easy to incorporate additional effects here, e.g. spike history)

Now the Hessian of the log-posterior of Q is C−1 + D, where D is diagonal

(Cunningham et al., 2007). For Newton, we need to solve (C−1 + D)Qdir = ∇.



Example: nearest-neighbor smoothing prior

For prior covariance C such that C−1 contains only neighbor potentials, we can

solve (C−1 + D)Qdir = ∇ in O(dim(Q)1.5) time using direct methods

(“approximate minimum degree” algorithm — built-in to Matlab sparse A\b
code) and potentially in O(dim(Q)) time using multigrid (iterative) methods

(Rahnama Rad and Paninski, 2008).



Estimating a time-varying tuning curve given

a limited sample path



Estimating a two-d place field
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