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The fundamental question in

neuroscience

The neural code: what is P (response | stimulus)?

Main question: how to estimate P (r|s) from (sparse)

experimental data?



Curse of dimensionality

Both stimulus and response can be very high-dimensional.

Stimuli:

• images

• sounds

• time-varying behavior

Responses:

• observations from single or multiple simultaneously-recorded

point processes



Avoiding the curse of insufficient data

1: Select stimuli more efficiently

— optimal experimental design

2: Estimate some functional f(p) instead of full joint p(r, s)

— information-theoretic functionals

3: Improved nonparametric estimators

4: Parametric approaches; connections to biophysical models



Setup

Assume:

• parametric model pθ(r|~x) on responses r given inputs ~x

• prior distribution p(θ) on finite-dimensional model space

Goal: estimate θ from experimental data

Usual approach: draw stimuli i.i.d. from fixed p(~x)

Adaptive approach: choose p(~x) on each trial to maximize

I(θ; r|~x) (e.g. “staircase” methods).



Snapshot: one-dimensional simulation
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Asymptotic result

Under regularity conditions, a posterior CLT holds

(Paninski, 2005):

pN

(√
N(θ − θ0)

)

→ N (µN , σ2); µN ∼ N (0, σ2)

• (σ2
iid)

−1 = Ex(Ix(θ0))

• (σ2
info)

−1 = argmaxC∈co(Ix(θ0)) log |C|

=⇒ σ2
iid > σ2

info unless Ix(θ0) is constant in x

co(Ix(θ0)) = convex closure (over x) of Fisher information

matrices Ix(θ0). (log |C| strictly concave: maximum unique.)



Illustration of theorem
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Technical details

Stronger regularity conditions than usual to prevent “obsessive”

sampling and ensure consistency.

Significant complication: exponential decay of posteriors pN off

of neighborhoods of θ0 does not necessarily hold.



Psychometric example

• stimuli x one-dimensional: intensity

• responses r binary: detect/no detect

p(r = 1|x, θ) = f((x − θ)/a)

• scale parameter a (assumed known)

• want to learn threshold parameter θ as quickly as possible
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Psychometric example: results

• variance-minimizing and info-theoretic methods

asymptotically same

• just one unique function f ∗ for which σiid = σopt; for any

other f , σiid > σopt

Ix(θ) =
(ḟa,θ)

2

fa,θ(1 − fa,θ)

• f ∗ solves

ḟa,θ = c
√

fa,θ(1 − fa,θ)

f ∗(t) =
sin(ct) + 1

2

• σ2
iid/σ

2
opt ∼ 1/a for a small



Part 2: Computing the optimal stimulus

OK, now how do we actually do this in neural case?

• Computing I(θ; r|~x) requires an integration over θ

— in general, exponentially hard in dim(θ)

• Maximizing I(θ; r|~x) in ~x is doubly hard

— in general, exponentially hard in dim(~x)

Doing all this in real time (∼ 10 ms - 1 sec) is a major challenge!

Joint work w/ J. Lewi, R. Butera, Georgia Tech. (Lewi et al., 2006)



Three key steps

1. Choose a tractable, flexible model of neural encoding

2. Choose a tractable, accurate approximation of the posterior

p(~θ|{~xi, ri}i≤N)

3. Use approximations and some perturbation theory to reduce

optimization problem to a simple 1-d linesearch



Step 1: the generalized linear model

ri ∼ Poiss(λi); λi|~xi, ~θ = f(~k · ~xi +
∑

j

ajri−j)

Goal: learn ~θ = {~k,~a} in as few trials as possible.



GLM likelihood

λi ∼ Poiss(λi)

λi|~xi, ~θ = f(~k · ~xi +
∑

j

ajri−j)

log p(ri|~xi, ~θ) = −f(~k ·~xi +
∑

j

ajri−j)+ri log f(~k ·~xi +
∑

j

ajri−j)

Two key points:

• Likelihood is “rank-1” — only depends on ~θ along ~z = (~x, ~r).

• f convex and log-concave =⇒ log-likelihood concave in ~θ



Step 2: representing the posterior

Idea: Laplace approximation

p(~θ|{~xi, ri}i≤N) ≈ N (µN , CN)

Justification:

• posterior CLT

• likelihood is log-concave, so posterior is also log-concave:

log p(~θ|{~xi, ri}i≤N) ∼ log p(~θ|{~xi, ri}i≤N−1) + log p(rN |xN , ~θ)

— Equivalent to an extended Kalman filter formulation



Efficient updating

Updating µN : one-d search

Updating CN : rank-one update, CN = (C−1
N−1 + b~zt~z)−1 — use

Woodbury lemma

Total time for update of posterior: O(d2)



Step 3: Efficient stimulus optimization

Laplace approximation =⇒ I(θ; r|~x) ∼ Er|~x log |CN−1|

|CN |

— this is nonlinear and difficult, but we can simplify using

perturbation theory: log |I + A| ≈ trace(A).

Now we can take averages over p(r|~x) =
∫

p(r|θ, ~x)pN(θ)dθ:

standard Fisher info calculation given Poisson assumption on r.

Further assuming f(.) = exp(.) allows us to compute

expectation exactly, using m.g.f. of Gaussian.

...finally, we want to maximize F (~x) = g(µN · ~x)h(~xtCN~x).



Computing the optimal ~x

max~x g(µN · ~x)h(~xtCN~x) increases with ||~x||2: constraining ||~x||2
reduces problem to nonlinear eigenvalue problem.

Lagrange multiplier approach (Berkes and Wiskott, 2006)

reduces problem to 1-d linesearch, once eigendecomposition is

computed — much easier than full d-dimensional optimization!

Rank-one update of eigendecomposition may be performed in

O(d2) time (Gu and Eisenstat, 1994).

=⇒ Computing optimal stimulus takes O(d2) time.



Near real-time adaptive design
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Simulation overview



Gabor example

— infomax approach is an order of magnitude more efficient.



Handling nonstationary parameters

Various sources of nonsystematic nonstationarity:

• Eye position drift

• Changes in arousal / attentive state

• Changes in health / excitability of preparation

Solution: allow diffusion in extended Kalman filter:

~θN+1 = ~θN + ǫ; ǫ ∼ N (0, Q)



Nonstationary example
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Nonstationary example
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Spike history example
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Conclusions

• Three key assumptions/approximations enable real-time

(O(d2)) infomax stimulus design:

— generalized linear model

— Laplace approximation

— first-order approximation of log-determinant

• Able to deal with adaptation through spike history terms

and nonstationarity through Kalman formulation

• Extensions: model misspecification; multi-neuron effects;

model nonlinearities; application to real data.
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