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The fundamental question in

neurosclience

Spike Responses

The neural code: what is P(response | stimulus)?

Main question: how to estimate P(r|s) from (sparse)
experimental data?



Curse of dimensionality

Both stimulus and response can be very high-dimensional.

Stimuli:

® images

e sounds

e time-varying behavior
Responses:

e observations from single or multiple simultaneously-recorded

point processes



Avoiding the curse of insufficient data

1: Select stimuli more efficiently

— optimal experimental design

2: Estimate some functional f(p) instead of full joint p(r, s)

— information-theoretic functionals
3: Improved nonparametric estimators

4: Parametric approaches; connections to biophysical models



Setup

Assume:

e parametric model py(r|Z) on responses r given inputs &

e prior distribution p(#) on finite-dimensional model space

Goal: estimate 6 from experimental data
Usual approach: draw stimuli i.i.d. from fixed p(Z)

Adaptive approach: choose p(Z) on each trial to maximize
I[(0;7|%) (e.g. “staircase” methods).



Snapshot: one-dimensional simulation
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Asymptotic result

Under regularity conditions, a posterior CLT holds
(Paninski, 2005):

(VRO - 00)) = Npx,0%): oy ~ N(0,0%)

¢ (U?z’d)_l = E,(1.(0o))

¢ (O-i2nfo>_1 — algIMaXceeo(1,(6)) log |C|

—> 074> 0;.5, unless I,(f) is constant in x

co(I,(6y)) = convex closure (over x) of Fisher information
matrices I,(6y). (log|C| strictly concave: maximum unique.)
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Technical details

Stronger regularity conditions than usual to prevent “obsessive”

sampling and ensure consistency.

Significant complication: exponential decay of posteriors py oft
of neighborhoods of #; does not necessarily hold.



Psychometric example

stimuli x one-dimensional: intensity
responses r binary: detect/no detect
p(r =1]z,0) = f((x —0)/a)

scale parameter a (assumed known)

want to learn threshold parameter 6 as quickly as possible




Psychometric example: results

e variance-minimizing and info-theoretic methods
asymptotically same

e just one unique function f* for which o4 = o,y; for any
other f, 04q > oopt
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Part 2: Computing the optimal stimulus

OK, now how do we actually do this in neural case?

e Computing I(0;r|Z) requires an integration over 6
— in general, exponentially hard in dim(6)
e Maximizing I(#;r|Z) in 7 is doubly hard

— in general, exponentially hard in dim(Z)

Doing all this in real time (~ 10 ms - 1 sec) is a major challenge!

Joint work w/ J. Lewi, R. Butera, Georgia Tech. (Lewi et al., 2006)



Three key steps

1. Choose a tractable, flexible model of neural encoding

2. Choose a tractable, accurate approximation of the posterior
p(OR T, i fi<n)

3. Use approximations and some perturbation theory to reduce
optimization problem to a simple 1-d linesearch



Step 1: the generalized linear model
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Goal: learn § = {k, @} in as few trials as possible.



GLM likelihood

A\i ~ Poiss(\;)
N|Z, 0 = fk -3+ Zam_j)

J
log p(r;|Z;, 67) = —f(E°f¢+Z a;ri—;)+1;log f(EfH‘Z a;ri-j)
j J

Two key points:

e Likelihood is “rank-1” — only depends on 0 along Z

(7, 7).

e f convex and log-concave =— log-likelihood concave in 0



Step 2: representing the posterior

Idea: Laplace approximation

—

p(O{@;, ritien) = N (un, Cn)
Justification:

e posterior CLT

e likelihood is log-concave, so posterior is also log-concave:

10gp(5’{fia Titi<n) ~ 108529(9_)‘ {7 tisn—1) + logp(ry|an, 5)

— Equivalent to an extended Kalman filter formulation



Efficient updating

log prior log likelihood log posterior

Updating uy: one-d search

Updating Cy: rank-one update, Cy = (Cy-, +b7*2)"t — use
Woodbury lemma

Total time for update of posterior: O(d?)



Step 3: Efficient stimulus optimization

ICn—1]
ICN|

Laplace approximation = [(0;7|%) ~ E,zlog

— this is nonlinear and difficult, but we can simplify using
perturbation theory: log |l + A| &~ trace(A).

Now we can take averages over p(r|Z) = [ p(r|0,Z)pn(0)do:
standard Fisher info calculation given Poisson assumption on .

Further assuming f(.) = exp(.) allows us to compute
expectation exactly, using m.g.t. of Gaussian.

. finally, we want to maximize F(¥) = g(uy - ©)h(Z*CNT).



Computing the optimal r

maxz g(uy - Z)h(Z'CnyT) increases with ||Z]]o: constraining ||Z]|s

reduces problem to nonlinear eigenvalue problem.

Lagrange multiplier approach (Berkes and Wiskott, 2006)
reduces problem to 1-d linesearch, once eigendecomposition is

computed — much easier than full d-dimensional optimization!

Rank-one update of eigendecomposition may be performed in
O(d?) time (Gu and Eisenstat, 1994).

— Computing optimal stimulus takes O(d?) time.



Near real-time adaptive design
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Simulation overview
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Gabor example

trial 0  trial 100 trial 500 trial 2500 trial 5000 © true

HEEnn
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— infomax approach is an order of magnitude more efficient.



Handling nonstationary parameters

Various sources of nonsystematic nonstationarity:
e Eye position drift
e Changes in arousal / attentive state

e Changes in health / excitability of preparation

Solution: allow diffusion in extended Kalman filter:

§N+1:§N+€§ ENN(()»Q)
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Nonstationary example

1_
-
-
1
® 0
-1

= random
—nfo. max
|---B true

e

20 40 60 80 100




Nonstationary example
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Spike history example
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Conclusions

e Three key assumptions/approximations enable real-time
(O(d?)) infomax stimulus design:

— generalized linear model
— Laplace approximation

— first-order approximation of log-determinant

e Able to deal with adaptation through spike history terms
and nonstationarity through Kalman formulation

e Extensions: model misspecification; multi-neuron effects;

model nonlinearities; application to real data.
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