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State-space models

Unobserved state qt with Markov dynamics p(qt+1|qt)

Observed yt: p(yt|qt)

Goal: infer p(qt|Y0:T )

Exact solutions: finite state-space HMM, Kalman filter (KF):

forward-backward algorithm (recursive; O(T ) time)

Approximate solutions: extended KF, particle filter, etc.... basic

idea: recursively update an approximation to “forward”

distribution p(qt|Y0:t)



Computing the MAP path

We often want to compute the MAP estimate

Q̂ = arg max
Q

p(Q|Y ).

In standard Kalman setting, forward-backward gives MAP

(because E(Q|Y ) and Q̂ coincide in Gaussian case).

More generally, extended Kalman-based methods give

approximate MAP, but are non-robust: forward distribution

p(qt|Y0:t) may be highly non-Gaussian even if full joint

distribution p(Q|Y ) is nice and log-concave.



Write out the posterior:

log p(Q|Y ) = log p(Q) + log p(Y |Q)

=
X

t

log p(qt+1|qt) +
X

t

log p(yt|qt)

Two basic observations:

• If log p(qt+1|qt) and log p(yt|qt) are concave, then so is log p(Q|Y ).

• Hessian H of log p(Q|Y ) is block-tridiagonal: p(yt|qt) contributes a

block-diag term, and log p(qt+1|qt) contributes a block-tridiag term.

Now recall Newton’s method: iteratively solve HQdir = ∇. Solving tridiagonal

systems requires O(T ) time.

— computing MAP by Newton’s method requires O(T ) time, even in highly

non-Gaussian cases.

Newton here acts as an iteratively reweighted Kalman smoother

(Fahrmeir and Kaufmann, 1991; Davis and Rodriguez-Yam, 2005;

Jungbacker and Koopman, 2007); all suff. stats may be obtained in O(T ) time.



Parameter estimation

Standard method: Expectation-Maximization (EM). Iterate between computing

E(Q|Y ) (or Q̂) and maximizing w.r.t. parameters θ. Can be seen as coordinate

ascent (slow) on first two terms of Laplace approximation:

log p(Y |θ) = log

Z

p(Q|θ)p(Y |θ, Q)dQ

≈ log p(Q̂θ|θ) + log p(Y |Q̂θ, θ) − 1

2
log |HQ̂θ

|

Q̂θ = arg max
Q

{log p(Q|θ) + log p(Y |Q, θ)}

Faster: simultaneous joint optimization.

θ̂ = arg max
θ

n

log p(Q̂θ|θ) + log p(Y |Q̂θ, θ)
o

= arg max
θ

max
Q

n

log p(Q̂|θ) + log p(Y |Q̂, θ)
o

.

Write the joint Hessian in (Q, θ) as

0

@

Hθθ HT
θQ

HθQ HQQ

1

A, with HQQ block-tridiag.

Now use the Schur complement to efficiently compute the Newton step

(Koyama and Paninski, 2009; Paninski et al., 2010).

Computing ∇θ log |HQ̂θ
| also turns out to be easy (O(T ) time) here.



Constrained optimization

In many cases we need to impose constraints (e.g., nonnegativity) on qt. Easy to

incorporate here, via interior-point (barrier) methods:

arg max
Q∈C

log p(Q|Y ) = lim
ǫց0

arg max
Q

(

log p(Q|Y ) + ǫ
X

t

f(qt)

)

= lim
ǫց0

arg max
Q

(

X

t

log p(qt+1|qt) + log p(yt|qt) + ǫf(qt)

)

;

f(.) is concave and approaching −∞ near boundary of constraint set C. The

Hessian remains block-tridiagonal and negative semidefinite for all ǫ > 0, so

optimization still requires just O(T ) time.



Example: computing the MAP subthreshold

voltage given superthreshold spikes

Leaky, noisy integrate-and-fire model:

V (t + dt) = V (t) − dtV (t)/τ + σ
√

dtǫt, ǫt ∼ N (0, 1)

Observations: yt = 0 (no spike) if Vt < Vth; yt = 1 if Vt = Vth

(Paninski, 2006)



Example: inferring presynaptic input

It =
X

j

gj(t)(Vj − Vt)

gj(t + dt) = gj(t) − dtgj(t)/τj + Nj(t), Nj(t) > 0
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Example: inferring spike times from slow,

noisy calcium data

C(t + dt) = C(t) − dtC(t)/τ + Nt; Nt > 0; yt = Ct + ǫt

— nonnegative deconvolution is a recurring problem in signal processing; many

other possible applications (Vogelstein et al., 2008).



Further generalizations: GLM spike train

decoding

We’ve emphasized tridiagonal structure so far, but similar

results hold for any problem with a banded Hessian.

For example, look at point-process GLM:

λi(t) = f

[

b + ~ki · ~x(t) +
∑

i′,j

hi′,jni′(t − j)

]

If the spatiotemporal filter ~ki has a finite impulse response, then

Hessian (w.r.t. ~x(t)) is banded and optimal decoding of stimulus

~x(t) requires O(T ) time.

Similar speedups for MCMC methods (Ahmadian et al., 2010).



How important is timing?

(Ahmadian et al., 2010)



Optimal control of spike timing

Optimal experimental design and neural prosthetics applications

require us to perturb the network at will. How can we make a

neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(~k ∗ It + ht).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It

+ Hessian is banded =⇒ O(T ) optimization.



Optimal electrical control of spike timing
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Example: intracellular control of spike timing
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Optical conductance-based control of spiking

Vt+dt = Vt + dt
“

−gVt + gi
t(V

i − Vt) + ge
t (V e − Vt)

”

+
√

dtσǫt, ǫt ∼ N (0, 1)

gi
t+dt = gi

t + dt

„

−gi
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+ aiiL
i
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e
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«
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t+dt = ge

t + dt
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One last extension: two-d smoothing

Estimation of two-d firing rate surfaces comes up in a number of examples:

• place fields / grid cells

• post-fitting in spike-triggered covariance analysis

• tracking of non-stationary (time-varying) tuning curves

• “inhomogeneous Markov interval” models for spike-history dependence

How to generalize fast 1-d state-space methods to 2-d case? Idea: use Gaussian

process priors which are carefully selected to give banded Hessians.

Model: hidden variable Q is a random surface with a Gaussian prior:

Q ∼ N (µ, C);

Spikes are generated by a point process whose rate is a function of Q:

λ(~x) = f [Q(~x)] (easy to incorporate additional effects here, e.g. spike history)

Now the Hessian of the log-posterior of Q is C−1 + D, where D is diagonal

(Cunningham et al., 2007). For Newton, we need to solve (C−1 + D)Qdir = ∇.



Example: nearest-neighbor smoothing prior

For prior covariance C such that C−1 contains only neighbor potentials, we can

solve (C−1 + D)Qdir = ∇ in O(dim(Q)1.5) time using direct methods

(“approximate minimum degree” algorithm — built-in to Matlab sparse A\b
code) and potentially in O(dim(Q)) time using multigrid (iterative) methods

(Rahnama Rad and Paninski, 2009).



Estimating a time-varying tuning curve given

a limited sample path



Conclusions

• GLM and state-space approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between forward-backward methods

familiar from state-space theory and banded matrices

familiar from spline theory

• Log-concavity, banded matrix methods make computations

very tractable
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