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A golden age of statistical neuroscience

Some notable recent developments:

• machine learning / statistics / optimization methods for

extracting information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing)

• optical and optogenetic methods for recording from and

perturbing neuronal populations, at multiple scales

• large-scale, high-density multielectrode recordings

• growing acceptance that many fundamental neuroscience

questions are in fact statistics questions in disguise



Circuit inference via optical methods



Aim 1: Model-based estimation of spike rates

Note: each component here can be generalized easily.



Fast maximum a posteriori (MAP) estimation

Start by writing out the posterior:

log p(C|F ) = log p(C) + log p(F |C) + const.

=
∑
t

log p(Ct+1|Ct) +
∑
t

log p(Ft|Ct) + const.

Three basic observations:

• If log p(Ct+1|Ct) and log p(Ft|Ct) are concave, then so is log p(C|F ).

• Hessian H of log p(C|F ) is tridiagonal: log p(Ft|Ct) contributes a diag term,

and log p(Ct+1|Ct) contributes a tridiag term (Paninski et al., 2010).

• C is a linear function of n.

Newton’s method: iteratively solve HCdir = ∇. Tridiagonal solver requires O(T )

time. Can include nonneg constraint nt ≥ 0 via log-barrier (Koyama and

Paninski, 2010) — real-time deconvolution (Vogelstein et al., 2010).



Example: nonnegative MAP filtering



Multineuronal case: spatiotemporal demixing

Compressed sensing imaging
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Pnevmatikakis et al (2013)Model:

Y = C + ε

C(x, t) =

r∑
i=1

si(x)fi(t)

fi(t+ dt) =

(
1 −

dt

τi

)
fi(t) + ni(t)

Goal: infer low-rank matrix C from noisy Y . Rank r = number of visible neurons

Additional structure: jumps in fi(t) are non-negative

Locally rank-penalized convex optimization with nonnegativity constraints to infer C,

followed by iterative matrix factorization under nonnegativity constraints to infer

si(x), fi(t) (Pnevmatikakis et al, 2013). Examples: Machado, Lacefield, Shababo



Compressed sensing imaging
Idea: instead of raster scans, take randomized projections in each frame.

(from Studer et al, 2011)

Estimating C given randomized projections Y can be cast as a similar convex

optimization.



Compressed sensing imaging
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2 measurements per timestep (30x undersampling); Pnevmatikakis et al (2013)



Compressed sensing imaging
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Compressed sensing imaging
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Phase transitions in decoding accuracy

New tool: “statistical dimension” (Amelunxen, Lotz, McCoy, Tropp ’13).

Interesting feature of this problem: phase transition depends on pattern of spikes,

not just sparsity (as in standard LASSO problem).



Fully Bayesian approaches

Can we sample over {ni(t)} instead? In general, challenging:

high-dimensional binary vector; not much structure to exploit.

Currently exploring Hamiltonian Monte Carlo (HMC) methods.

Two tricks:

- Piecewise log-quadratic (PLQ) densities (e.g., truncated

multivariate normals) are easy to sample from using exact

integration of Hamiltonian dynamics - no step-size parameter

needed (Pakman and Paninski, ’13a). Can use similar O(T )

tricks as before.

- Arbitrary binary vectors or spike-and-slab posteriors can be

embedded in a PLQ density via simple augmented-variable

approach (Pakman and Paninski, ’13b)



Exact HMC truncated spike-and-slab sampling

(Pakman and Paninski ‘13b)



Aim 2: estimating network connectivity

Coupled GLM structure; concave loglikelihoods, optimization is straightforward

(Paninski, 2004; Pillow et al., 2008).



The dreaded common input problem

How to distinguish direct connectivity from common input?

(from Nykamp ‘07)

Previous work (e.g., Vidne et al, 2012) modeled common input terms

explicitly as latent variables; works well given enough a priori information,

but not a general solution.



A “shotgun sampling” approach

We can only observe K cells at a time.

Idea: don’t observe the same subset of K cells throughout the

experiment.

Instead, observe as many different K-subsets as possible.

Hard with multi-electrode arrays; easy with imaging approaches.

Statistics problem: how to patch together all of the estimated

subnetworks?

Want to integrate over {ni(t)}, but scaling to large networks is

a big challenge.



Approximate sufficient statistics in large

Poisson regressions

Model:

ni,t ∼ Poiss(λi,t), λi,t = exp(bi +Wint−1)

LLi =
∑
t

ni,t(bi +Wint−1)−
∑
t

exp(bi +Wint−1)

Idea: CLT approximation for second term. (Wint−1 is a big

sum; appeal to Diaconis-Freedman.)

Dramatic simplification: profile approx log-likelihood is

quadratic! (Ramirez and Paninski ’13)

Approximate sufficient statistics: E(nt), E(ntn
T
t−1). Can be

estimated from just the observed data - no need to impute

unobserved {ni,t}.



Simulated “shotgun” results
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K = 20% of network size; spike-and-slab priors (Keshri et al, 2013)



Aim 3: Optimal control of spike timing

To test our results, we want to perturb the network at will.

How can we make a neuron fire exactly when we want it to?

Assume bounded inputs; otherwise problem is trivial.

Start with a simple model:

λt = f(Vt + ht)

Vt+dt = Vt + dt (−gVt + aIt) +
√
dtσεt, εt ∼ N (0, 1).

Now we can just optimize the likelihood of the desired spike

train, as a function of the input It, with It bounded.

Concave objective function over convex set of possible inputs It
+ Hessian is tridiagonal =⇒ O(T ) optimization.

— again, can be done in real time (Ahmadian et al., 2011)...

though some open challenges when It is high-d, spatiotemporal



Applications

- sensory prosthetics, e.g. retinal prosthetics

- online adaptive experimental design: choose stimuli which provide as much

information about network as possible. Major problem here: updating sparse

posteriors. Factorized approximations to spike-and-slab posteriors are effective in

this problem (Shababo, Paige et al, ‘13)



Extension: Connectivity at the dendritic scale

Ramon y Cajal, 1888.



The filtering problem

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.

(Djurisic et al., 2004; Knopfel et al., 2006)



Basic paradigm: compartmental models

• write neuronal dynamics in terms of equivalent nonlinear, time-varying

RC circuits

• leads to a coupled system of stochastic differential equations



Simplest case: Kalman filter

Dynamics and observation equations:

d~V /dt = A~V + ~εt

~yt = Bt
~V + ~ηt

Vi(t) = voltage at compartment i

A = cable dynamics matrix: includes leak terms (Aii = −gl) and

intercompartmental terms (Aij = 0 unless compartments are adjacent)

Bt = observation matrix: point-spread function of microscope

Even this case is challenging, since d = dim(~V ) is very large

Standard Kalman filter: O(d3) computation per timestep (matrix inversion)



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR

observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can

approximate Kalman covariance Ct = cov(qt|Y1:t) as a perturbation of the

marginal covariance C0 + UtDtU
T
t , with C0 = limt→∞ cov(qt).

C0 is the solution to a Lyapunov equation. It turns out that we can solve

linear equations involving C0 in O(dim(q)) time via Gaussian belief

propagation, using the fact that the dendrite is a tree.

The necessary recursions — i.e., updating Ut, Dt and the Kalman mean

E(qt|Y1:t) — involve linear manipulations of C0, using

Ct = [(ACt−1A
T + Q)−1 + Bt]

−1

C0 + UtDtU
T
t =

(
[A(C0 + Ut−1Dt−1U

T
t−1)AT + Q]−1 + Bt

)−1
,

and can be done in O(dim(q)) time (Paninski, 2010). Generalizable to

many other state-space models (Pnevmatikakis and Paninski, 2011).

Examples: speckle, vertical



Application: synaptic locations/weights



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) +W ~U(t) + ~ε(t);

U(t) are known presynaptic spike times, and we want to detect which

compartments are connected (i.e., infer the weight matrix W ).

Loglikelihood is quadratic; W is a sparse vector. L1-penalized loglikelihood can

be optimized efficiently with homotopy (LARS) approach.

Total computation time: O(dTk); d = # compartments, T = # timesteps, k = #

nonzero weights.



Example: real neural geometry

700 timesteps observed; 40 random compartments (of > 2000) observed per

timestep

Compressed sensing measurements improve accuracy further (Pakman et al 2013).



Conclusions

• Modern statistical approaches provide flexible, powerful

methods for answering key questions in neuroscience —

many of these problems are statistics problems in disguise

• Close relationships between biophysics, statistical modeling,

and experimental design

• Modern optimization methods make computations very

tractable; suitable for closed-loop experiments

• Dimensionality reduction is a key area for further research:

new methods, new ideas

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas
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