Fast methods for nonparametric
estimation of encoding models

Goal: estimate dependence of firing rate on
kinematic parameters.

Avoid parametric assumptions: use
nonparametric approach.

Avoid oversmoothing: use a penalizer that
allows for sharp changes in firing rate



Challenge: computation.

Optimize L(z) + Q(z):

z = firing rate surface

L(z) = data loglikelihood

Q(z) = penalizer (Huber total variation norm)

Solution: use splitting methods to reduce
problem to a sequence of HMM-like smoothing
problems. Leads to linear-time methods.
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Rahnama Rad and Paninski, in progress



Exploiting expected loglikelihoods
N
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r: responses; x: kinematic variables; 6: parameter to be estimated



EL can be computed and optimized an order of magnitude faster than LL.

In many cases EL can be optimized analytically; MLE must be computed numerically
In many cases EL-based estimates are more accurate than MLE

Other applications: fast model selection, MCMC sampling

For full details, see Ramirez and Paninski (2012).
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Fast high-dimensional state space

methods

Standard smoothing methods scale like O(d3) per
timestep (or worse).

New method: O(d). Allows for much richer nonstationary
models than previously possible. Main idea: low-rank
approximation of posterior state covariance.

Can handle non-smooth priors, likelihoods.

Pnevmatikakis et al (2012): proved convergence, rigorous
error bounds.



Exact inference methods in
nonstandard state spaces

How do we perform exact inference for time series on
manifolds, or more general state spaces (e.g., space of all
reachable joint configurations)? Standard methods assume
vector state spaces.

Main result: exact inference for priors of form:
T—-1 R
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See Smith et al (2012) for full details.



Convex methods for state-space
identification

Poisson Linear Dynamical System

Latent linear dynamical system:

X = AX—1+ €&
Xx € R™

Linear-nonlinear-Poisson output:

)7 t — C)—(’t
siclyic ~ Poiss(exp(yit))
s, ¥yt € R”

Our approach: estimate y; by nuclear norm minimization, recover
A and C by subspace identification.




Actual Wrist Position
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Randomly Initialized EM versus




Noiseless Data

Assume we know y; already, and there is no process noise.
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Noiseless Data
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Large block-Hankel matrix (nkxT) but only rank m.
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Can reconstruct C and A up to an irrelevant rotation.




Recovering y;

|dea: find estimate y; that looks like it was generated by noiseless
system.

myin rank( \A/) + A ; log p(sit|Vit)

@ ) controls amount of regularization.

@ Computationally intractable! Try a convex relaxation, the

nuclear norm (Fazel et al. [2001], Liu and Vandenberghe
[2009])



Control Input
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Simulated example; Pfau, Pnevmatikakis, Paninski, in progress



2 Latent States
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Sequential MCMC methods for robust
particle filtering

Recall basic recursion:

p(qe, Y1:t) = p(Yt|qe) / (G| qe—1)P(qe—1, Y1:4-1)dq_1.
gt—1

Particle filter: importance sampling to approximate integral.

Can be highly effective (Doucet et al., 2001).

However, importance sampling is known to be very non-robust
in many important cases: if we put the particles in the wrong
part of the space, the variance of the importance weights

becomes too large and the filter fails.



Robust particle filtering via sequential MCMC

Rewrite basic recursion:

p(q, Y1) / P(Ye|qe)P(Ge| Ge—1)P(Ge—1, Y14—1)dqe—1. (1)

qt—1

—~
(W)
~—

— / p(Qt dt—1, Yl:t)dqt—l'

qt—1

Basic idea: use MCMC to sample directly from p(qs, qi—1|Y1:¢) —
bypass nonrobust particle filter step entirely.



Reparameterized Gibbs sampling

Basic Gibbs sampling on p(g¢, g:—1|Y1:¢) often doesn’t work: mixing is too slow,

because p(qt|g:i—1 = qi_1,Y1:t) densities can have minimal overlap for different 1.

original densities standardized densities

q, reparameterized q,

But Gibbs sampling on p(g:, g:—1|Y1:¢) on a reparameterized (“standardized”)
space often mixes quite efficiently.



Application to Fitzhugh-Nagumo model

— Spike observed at t = 0.5.
— Standard particle filter fails; standardized Gibbs approach works very well.

See Paninski et al (2012) for full details.



Fast, robust methods for sampling
from truncated Gaussians

Exact HMC Gibbs sampler
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See Pakman and Paninski (2012) for full details.



Quantifying information loss due to
corrupted or misidentified spike trains

Reconstruction error

0.1p

Cluster separation p

See Smith and Paninski (2012) for full details.



