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A different perspective: optimal decoding of

retinal spike train data

Preparation: macaque retina in vitro (Litke et al ’04)

— extracellularly-recorded responses of populations of ganglion cells



Decoding the spatiotemporally-filtered

stimulus via fast Bayesian methods

(Ahmadian et al ’11); note: motor decoders provide much lower bandwidth.



Outline

• The state of the art: state-space models

• Fast estimation of nonlinear, nonstationary encoding models

• Robust subspace identification

• New methods for optimal Bayesian decoding: fast

approximate Kalman-based methods and sequential Markov

chain Monte Carlo

• Non-myopic optimal experimental design

• Using all the available information: fast approximate

methods for hierarchical regularized models

• Modeling and exploiting co-adaptation.



State-space models

Some notation:

xt = kinematic state

rt = neural response

encoding model: p(rt|xt)

kinematics model: p(xt|xt−1)

optimal Bayesian decoder: p(xt|r1:t)

This approach is flexible, computationally efficient (because the

decoder is computed recursively at each time step t), and

currently provides the best available performance.



Challenge: estimating the encoder p(rt|xt)

— Simple, near-linear models have sufficed so far in 2d planar

hand tracking studies; no longer true for > 20-DOF movements

(see, e.g., Vargas-Irwin et al ’10)

— Nonstationarity is a key, unavoidable issue: the subject

adapts to the controller as the controller adapts to the subject.

Re-estimating parameters every once in a while is a suboptimal

solution.

— Speed is essential, since we have to estimate an encoding

model for each observed neural channel.

— Reliability requirements translate into a need to avoid local

minima in parameter searches: convex optimization is key tool



New methods for tractably estimating

nonlinear models

Simplest example: higher-order terms (e.g., quadratic; Li ’09):

E(rt|xt) = b + kT xt + xT

t
Axt.

Problem: number of parameters explodes as we add more terms.

However, we can exploit new convex optimization ideas from the

machine learning literature (low-rank tensor completion) to

avoid overfitting and obtain quite robust and accurate estimates:
True A Estimated A (nuclear) Estimated A (ridge)



New methods for fast optimal Bayesian

nonstationarity tracking

A flexible framework: generalized additive models, E(rt) = F
h

P

d

i=1
ai(t)gi(xt)

i

.

As ai(t) changes, so do the response properties.

Goal: track the ai’s given limited, noisy data.

Fast, robust methods for tracking nonstationarities (optimal Bayesian inference

requires just O(dT ) time; Paninski et al, ’11)



Another challenge: latent variable models

E(rt) = F (xt, zt)

zt = latent state variable whose dynamics are restricted to a

low-dimensional subspace. Captures the fact that firing rates

are modulated by many variables that we don’t observe directly

(i.e., not just xt).

Similar models proposed by Yu, Sahani, Shenoy et al and Wu,

Paninski et al: significant improvements over models with no zt

term

Problem: estimation of these models is more challenging, since

zt is never observed.



Subspace identification

Previous work applied iterative methods

(expectation-maximization) for estimating the latent model

parameters.

These methods are slow and non-robust: many iterations, prone

to local optima.

Idea: borrow methods from control literature (e.g., Liu and

Vandenberghe ’09). Use matrix completion again to identify the

subspace using limited, noisy data.

Convex problem: no local optima.



Robust decoding

Once model is identified, how to decode?

If p(xt|r1:t) is unimodal, then Kalman-based methods suffice. —

we can exploit our new fast O(d) Kalman methods here as well.

If p(xt|xt−1) or p(rt|xt) is strongly multimodal, Monte Carlo

methods are necessary.

“Particle filtering” is the most common approach; in principle,

these methods are very general. However, in practice they are

often slow and very non-robust.

Speed issues are solvable: method is embarrassingly parallel at

each timestep t, and could be implemented on a GPU.

Robustness issues are more fundamental: standard methods put

particles in the wrong place in many cases



Sequential MCMC methods are much more

robust than the particle filter

(Vidne and Paninski ’11)



Optimal experimental design

Idea: choose test movements to best constrain the model

parameters (simple example: Cunningham et al ’08).

Previous approaches: choose one test movement at a time, in a

greedy (myopic) way (Mackay, ’92).

New approach: exploit connection to classical problem in

information theory to compute the globally optimal sequence:

no greedy local optimization required.

(Lewi et al ’09)



Hierarchical models

We record from many units simultaneously, but typically

estimate encoding models one unit at a time: this is suboptimal.

(Field et al, Nature ’10; Sadeghi et al, in preparation)



Modeling and exploiting co-adaptation

A number of intriguing results, but no good quantitative models

(to my knowledge).

State-space ideas provide a possible starting point.

Simplest case: linear filtering: x̂t = θT

t
rt

Subspace model: E(rt) = Kut: subject can only influence rt

within a subspace K of dim = DOF.

Co-adaptation: experimentalist optimizes θt to optimize

accuracy; subject tries to infer θt based on recent history, in

order to best choose the control signal ut.



Modeling and exploiting co-adaptation

Natural state-space model: subject tracks mapping θ̂t (with

uncertainty) via Bayesian updates. Similar models in motor

psychophysics literature on adaptation of sensorimotor maps.

Goal: exploit co-adaptation instead of fighting it:

— natural hierarchical model for tracking encoding models

— improved decoder: incorporate subject’s uncertainty about θ

— connection to optimal design: the subject will try control

signals ut that balance exploration (to optimize information

about θ) and minimization of error. Qualitatively consistent

with nonstationarities during tracking (e.g., results from

Carmena, Schwartz labs).



Thanks!
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