State-space models

Some notation:

* X(t) = kinematic state

* r(t) = neural response

* encoding model: p[r(t) | x(t)]

* kinematics model: p[x(t) | x(t-1)]

* optimal Bayesian decoder: p[x(t)|r(1:t)]

This approach is computationally efficient (because the
decoder is computed recursively at each time step t),
provides measures of posterior uncertainty, and is currently
the most flexible / powerful framework available.



Progress in several directions

Fast estimation of nonlinear, nonstationary encoding models (Pnevmatikakis et al
JCGS ‘13, Pnevmatikakis+P, AISTATS '12)

Robust subspace identification for dimensionality reduction and estimation of
latent dynamics (Pnevmatikakis, Pfau, P, COSYNE '13)

Fast robust methods for nonparametric estimation of nonlinear encoding models
(Rahnama+P, COSYNE '13)

“Expected loglikelihood” methods for fast encoding model estimation (Ramirez+P,
under review)

Hierarchical estimation of encoding models: sharing information across all
available neurons (Merel, Pnevmatikakis et al, COSYNE '13)

Exact inference in “low-rank” state-space models (Smith et al, AISTATS ’12)

Robust sequential Markov chain Monte Carlo “particle filter” methods (P et al, CISS
'12)

Fast, robust MCMC methods for sampling from constrained distributions (Pakman
+P, under review)

Quantifying information loss due to spike sorting errors and loss of spiking
temporal resolution (Smith+P, under review)

See http://www.stat.columbia.edu/~liam/research/pubs for (p)reprints




Fast high-dimensional adaptive
encoding model estimation methods

Goal: update encoding model parameters adaptively.

Standard fully-Bayesian adaptive estimation methods scale like O(d?3)
per timestep (or worse).

New method: O(d). Allows for much richer nonstationary models than
previously possible. Main idea: low-rank approximation of posterior
state covariance.

Can handle non-smooth priors, likelihoods.

Introduced in P (2011); generalized in Pnevmatikakis+P (2012);

Pnevmatikakis et al (2012) proved convergence, rigorous error
bounds.



Exploiting expected loglikelihoods
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r: responses; x: kinematic variables; 6: parameter to be estimated

Expected LL (ELL) can be computed and optimized orders of magnitude faster than LL.
ELL estimates are often more accurate than MLE. Full details: Ramirez and Paninski (2012).



Convex methods for state-space
identification

Basic idea: observed responses depend on
latent (unobserved) variables in addition to
(observed) kinematics

Modeling these latent effects explicitly
improves decoding performance (as shown by
various groups)

Usual approach for estimating latent factors:
expectation maximization (EM)

But EM is slow and non-robust: non-convex
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Dimensionality reduction; inferring hidden dynamics

Dynamic generalized factor analysis model: g; evolves according to a simple linear
dynamical system, with “kicks.”
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Log-firing rates modeled as linear functions of
q:. Convex rank-penalized optimization methods to infer g; given spike train.
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Open challenge: richer nonlinear models. E. Pnevmatikakis and D. Pfau, ongoing



Exact inference methods in
nonstandard state spaces

How do we perform exact inference for time series on manifolds, or
more general state spaces (e.g., space of all reachable joint
configurations)? Standard methods assume vector state spaces; exact
methods previously available only in Gaussian (Kalman) setting.

Main result: broad class of priors that enable exact inference:
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See Smith et al (2012) for full details.



Sequential MCMC methods for robust
particle filtering

Recall basic recursion:

p(qe, Y1:t) = p(Yt|qe) / (G| qe—1)P(qe—1, Y1:4-1)dq_1.
gt—1

Particle filter: importance sampling to approximate integral.

Can be highly effective (Doucet et al., 2001).

However, importance sampling is known to be very non-robust
in many important cases: if we put the particles in the wrong
part of the space, the variance of the importance weights

becomes too large and the filter fails.



Robust particle filtering via sequential MCMC

Rewrite basic recursion:

p(q. Y1) = / P(Yelqe)P(qe|qe—1)P(G—1, Y1:e—1)dqe 1. (1)

qt—1

Do

=/ P(Gts Gr—1, Y1:6)d G- (2)

gt—1

Basic idea: use MCMC to sample directly from p(qs, gs—1|Y1:4) —
bypass nonrobust particle filter step entirely.

See Paninski et al (2012) for full details.



