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Retinal ganglion neuronal data

Preparation: dissociated macaque retina

— extracellularly-recorded responses of populations of RGCs

Stimulus: random spatiotemporal visual stimuli (Pillow et al., 2008)



Receptive fields tile visual space



Multineuronal point-process model
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λi(t) = f

(

bi + ~ki · ~x(t) +
∑

i′,j

hi′,jni′(t − j)

)

,

— likelihood is easy to compute and to maximize (concave optimization)

(Paninski, 2004; Paninski et al., 2007; Pillow et al., 2008)

— close connections to noisy integrate-and-fire model



Optimal Bayesian decoding

E(~x|spikes) ≈ arg max~x log P (~x|spikes) = arg max~x [log P (spikes|~x) + log P (~x)]

(Loading yashar-decode.mp4)

— Computational points:

• log P (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of log P (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2010;

Ahmadian et al., 2010).
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Optimal Bayesian decoding

E(~x|spikes) ≈ arg max~x log P (~x|spikes) = arg max~x [log P (spikes|~x) + log P (~x)]

— Computational points:

• log P (spikes|~x) is concave in ~x: concave optimization again.

• Decoding can be done in linear time via standard Newton-Raphson methods,

since Hessian of log P (~x|spikes) w.r.t. ~x is banded (Pillow et al., 2010;

Ahmadian et al., 2010).

— Biological point: paying attention to correlations improves decoding accuracy.



Application: how important is timing?

— further applications: decoding velocity signals (Lalor et al., 2009), tracking images

perturbed by eye jitter (Pfau et al., 2009)



Next steps: reconsidering the model



Considering common input effects

— universal problem in network analysis: can’t observe all neurons!





Extension: including common input effects



Direct state-space optimization methods

To fit parameters, optimize approximate marginal likelihood:

log p(spikes|θ) = log

∫

p(Q|θ)p(spikes|θ,Q)dQ

≈ log p(Q̂θ|θ) + log p(spikes|Q̂θ) −
1

2
log |JQ̂θ

|

Q̂θ = arg max
Q

{log p(Q|θ) + log p(spikes|Q)}

— Q is a very high-dimensional latent (unobserved) “common

input” term. Taken to be a Gaussian process here with

autocorrelation time ≈ 5 ms (Khuc-Trong and Rieke, 2008).

— correlation strength specified by one parameter per cell pair.

— all terms can be computed in O(T ) via banded matrix

methods (Paninski et al., 2010).



Inferred common input effects are strong
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— note that inferred direct coupling effects are now relatively small.



Common-input-only model captures x-corrs

— single and triple-cell activities captured well, too (Vidne et al., 2009)



Decoding the stimulus and hidden input

arg max~x p(~x|y, θ) = arg max~x

∫

p(~x, Q|y, θ)dQ ≈ arg max~x,Q p(~x, Q|y, θ)



Models lead to similar decoding performance

...but CI model is more robust to spike jitter and deletions (Vidne et al., 2009).



Next steps: inferring cones

— cone locations and color identity can be inferred accurately with high

spatial-resolution stimuli via maximum a posteriori estimates (Field et al., 2010).



Next steps: inferring circuitry?
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