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The coming statistical neuroscience decade

Some notable recent developments:

• machine learning / statistics methods for extracting

information from high-dimensional data in a

computationally-tractable, systematic fashion

• computing (Moore’s law, massive parallel computing, GPUs)

• optical methods for recording and stimulating many

genetically-targeted neurons simultaneously

• high-density multielectrode recordings (Litke’s 512-electrode

retinal readout system; Shepard’s 65,536-electrode active

array)





Mapping connectivity at the dendritic level

Ramon y Cajal, 1888.



The filtering problem

Spatiotemporal imaging data opens an exciting window on the

computations performed by single neurons, but we have to deal with noise

and intermittent observations.



Basic paradigm: compartmental models

• write neuronal dynamics in terms of equivalent nonlinear, time-varying

RC circuits

• leads to a coupled system of stochastic differential equations



Inference of spatiotemporal neuronal state

given noisy observations

Variable of interest, qt, evolves according to a noisy differential equation (e.g.,

cable equation):

dq/dt = f(q) + ǫt.

Make noisy observations:

y(t) = g(qt) + ηt.

We want to infer E(qt|Y ): optimal estimate given observations. We also want

errorbars: quantify how much we actually know about qt.

If f(.) and g(.) are linear, and ǫt and ηt are Gaussian, then solution is classical:

Kalman filter.

Extensions to nonlinear dynamics, non-Gaussian observations: hidden Markov

(“state-space”) model, particle filtering (Huys and Paninski, 2009)



Basic idea: Kalman filter

Dynamics and observation equations:

d~V /dt = A~V + ~ǫt

~yt = Bt
~V + ~ηt

Vi(t) = voltage at compartment i

A = cable dynamics matrix: includes leak terms (Aii = −gl) and

intercompartmental terms (Aij = 0 unless compartments are adjacent)

Bt = observation matrix: point-spread function of microscope

Even this case is challenging, since d = dim(~V ) is very large

Standard Kalman filter: O(d3) computation per timestep (matrix inversion)

(Paninski, 2010): methods for Kalman filtering in just O(d) time: take advantage

of sparse tree structure.



Low-rank approximations

Key fact: current experimental methods provide just a few low-SNR

observations per time step.

Basic idea: if dynamics are approximately linear and time-invariant, we can

approximate Kalman covariance Ct = cov(qt|Y1:t) as a perturbation of the

marginal covariance C0 + UtDtU
T

t
, with C0 = limt→∞ cov(qt).

C0 is the solution to a Lyapunov equation. It turns out that we can solve

linear equations involving C0 in O(dim(q)) time via Gaussian belief

propagation, using the fact that the dendrite is a tree.

The necessary recursions — i.e., updating Ut, Dt and the Kalman mean

E(qt|Y1:t) — involve linear manipulations of C0, using

Ct = [(ACt−1A
T + Q)−1 + Bt]

−1

C0 + UtDtU
T

t
=

(

[A(C0 + Ut−1Dt−1U
T

t−1
)AT + Q]−1 + Bt

)

−1

,

and can be done in O(dim(q)) time (Paninski, 2010). Generalizable to

many other state-space models (Pnevmatikakis and Paninski, 2011).



Example: inferring voltage from subsampled

observations

(Loading low-rank-speckle.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_speckle.mp4
Media File (video/mp4)



Example: summed observations

(Loading low-rank-horiz.mp4)


Convertified by iSquint - http://www.isquint.org

low_rank_horiz.mp4
Media File (video/mp4)



Applications

• Optimal experimental design: which parts of the neuron

should we image? Submodular optimization

(Huggins and Paninski, 2011)

• Estimation of biophysical parameters (e.g., membrane

channel densities, axial resistance, etc.): reduces to a simple

nonnegative regression problem once V (x, t) is known

(Huys et al., 2006)

• Detecting location and weights of synaptic input



Application: synaptic locations/weights



Application: synaptic locations/weights



Application: synaptic locations/weights

Including known terms:

d~V /dt = A~V (t) + W ~U(t) + ~ǫ(t);

U(t) are known presynaptic spike times, and we want to detect which

compartments are connected (i.e., infer the weight matrix W ).

Loglikelihood is quadratic; W is a sparse vector. Adapt standard sparse

regression methods from machine learning (Efron et al., 2004).

Total computation time: O(dTk); d = # compartments, T = # timesteps, k = #

nonzero weights.



Example: toy neuron



Example: toy neuron



Example: real neural geometry



Example: real neural geometry

700 timesteps observed; 40 compartments (of > 2000) observed per timestep

Note: random access scanning essential here: results are poor if we observe the

same compartments at each timestep.



Work in progress

• Quantifying robustness w.r.t. errors in tree reconstruction,

parameter settings, etc.

• Combining fast Kalman filter with particle filter to model

strongly nonlinear dendrites

• Exploiting local tree structure: distant compartments nearly

uncoordinated (→ factorized particle filter)

• Incorporating calcium measurements

(Pnevmatikakis et al., 2011)



Conclusions

• Modern statistical approaches provide flexible, powerful

methods for answering key questions in neuroscience

• Close relationships between biophysics and statistical

modeling

• Modern optimization methods make computations very

tractable; suitable for closed-loop experiments

• Experimental methods progressing rapidly; many new

challenges and opportunities for breakthroughs based on

statistical ideas
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