Statistical models for neural encoding, decoding, and optimal stimulus design

Liam Paninski

Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/~liam *liam@stat.columbia.edu* March 2, 2009

— with J. Lewi, Y. Ahmadian, S. Woolley, J. Schumacher, and D. Schneider.
Support: NIH CRCNS, NSF CAREER, McKnight Scholar award, Gatsby Foundation.

Reinterpreting the STRF

Classic method for estimating spectrotemporal receptive field: fit the linear-Gaussian regression model

$$m_t = \vec{k} \cdot \vec{x}_t + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2).$$

The STRF \vec{k} weights the stimulus \vec{x}_t ; ϵ_t models variability of response n_t .

Pros:

- analytical solution for optimal \hat{k} .
- easy to incorporate prior assumptions on \vec{k} (e.g., smoothness); Bayesian smoothing methods built in to STRFPak (Theunissen et al., 2001).

Reinterpreting the STRF

Classic method for estimating spectrotemporal receptive field: fit the linear-Gaussian regression model

$$m_t = \vec{k} \cdot \vec{x}_t + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2).$$

The STRF \vec{k} weights the stimulus \vec{x}_t ; ϵ_t models variability of response n_t .

Cons:

- Gaussian model is not really accurate for spike trains.
- responses n_t can be negative.
- given stimulus \vec{x}_t , responses n_t are independent: no refractoriness, burstiness, firing-rate adaptation, etc.

Generalized linear model

GLM likelihood

$$\lambda_t = f(\vec{k} \cdot \vec{x}_t + \sum_j a_j n_{t-j})$$
$$\log p(n_t | \vec{x}_t, \vec{\theta}) = -f(\vec{k} \cdot \vec{x}_t + \sum_j a_j n_{t-j}) + n_t \log f(\vec{k} \cdot \vec{x}_t + \sum_j a_j n_{t-j})$$

Key points:

- f convex and log-concave \implies log-likelihood concave in $\vec{\theta}$. Easy to optimize, so estimating $\hat{\theta}$ is very tractable.
- Easy to include smoothing priors, as in STRFPak.
- Can also include nonlinear terms easily (Gill et al., 2006; Ahrens et al., 2008)

Estimated parameters

(a)

Model performance

Fast optimal decoding

Maximize $\log p(n|\vec{x}, \vec{\theta})$ with respect to \vec{x} . Concave optimization; only O(T) time (Ahmadian et al., 2008b).

Optimal stimulus design

Idea: we have full control over the stimuli we present. Can we choose stimuli \vec{x}_t to maximize the informativeness of each trial?

— More quantitatively, optimize $I(n_t; \theta | \vec{x}_t)$ with respect to \vec{x}_t . Maximizing $I(n_t; \theta; \vec{x}_t) \implies$ minimizing uncertainty about θ .

In general, very hard to do: high-d integration over θ to compute $I(n_t; \theta | \vec{x}_t)$, high-d optimization to select best \vec{x}_t .

GLM setting makes this surprisingly tractable (Lewi et al., 2009).

Infomax vs. randomly-chosen stimuli

Simulated example

— infomax can be an order of magnitude more efficient.

Application to real data: choosing an optimal stimulus sequence

— stimuli chosen from a fixed pool; greater improvements expected if we can choose arbitrary stimuli on each trial.

Handling nonstationary parameters

Various sources of nonsystematic nonstationarity:

- Plasticity/adaptation
- Changes in arousal / attentive state
- Changes in health / excitability of preparation

Solution: allow diffusion in parameter θ (Czanner et al., 2008; Lewi et al., 2009):

$$\vec{\theta}_{N+1} = \vec{\theta}_N + \epsilon; \quad \epsilon \sim \mathcal{N}(0, Q)$$

Simulation: nonstationary parameters

Conclusion

GLM framework leads to tractable methods for:

- estimating STRFs including spike-history effects
- optimal decoding
- optimal stimulus design
- nonstationarity tracking.
- Strong potential for applications in birdsong system.

References

- Ahmadian, Y., Pillow, J., Kulkarni, J., Shlens, J., Simoncelli, E., Chichilnisky, E., and Paninski, L. (2008a). Analyzing the neural code in the primate retina using efficient model-based decoding techniques. SFN Abstract.
- Ahmadian, Y., Pillow, J., and Paninski, L. (2008b). Efficient Markov Chain Monte Carlo methods for decoding population spike trains. *Under review, Neural Computation*.
- Ahrens, M., Paninski, L., and Sahani, M. (2008). Inferring input nonlinearities in neural encoding models. *Network: Computation in Neural Systems*, 19:35–67.
- Czanner, G., Eden, U., Wirth, S., Yanike, M., Suzuki, W., and Brown, E. (2008). Analysis of between-trial and within-trial neural spiking dynamics. *Journal of Neurophysiology*, 99:2672–2693.
- Gill, P., Zhang, J., Woolley, S., Fremouw, T., and Theunissen, F. (2006). Sound representation methods for spectro-temporal receptive field estimation. *Journal of Computational Neuroscience*, 21:5–20.
- Lewi, J., Butera, R., and Paninski, L. (2009). Sequential optimal design of neurophysiology experiments. *Neural Computation*, In press.
- Theunissen, F., David, S., Singh, N., Hsu, A., Vinje, W., and Gallant, J. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Computation in Neural Systems, 12:289–316.