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Reinterpreting the STRF

Classic method for estimating spectrotemporal receptive field:

fit the linear-Gaussian regression model

nt = ~k · ~xt + ǫt, ǫt ∼ N (0, σ2).

The STRF ~k weights the stimulus ~xt; ǫt models variability of

response nt.

Pros:

• analytical solution for optimal k̂.

• easy to incorporate prior assumptions on ~k (e.g.,

smoothness); Bayesian smoothing methods built in to

STRFPak (Theunissen et al., 2001).



Reinterpreting the STRF

Classic method for estimating spectrotemporal receptive field:

fit the linear-Gaussian regression model

nt = ~k · ~xt + ǫt, ǫt ∼ N (0, σ2).

The STRF ~k weights the stimulus ~xt; ǫt models variability of

response nt.

Cons:

• Gaussian model is not really accurate for spike trains.

• responses nt can be negative.

• given stimulus ~xt, responses nt are independent: no

refractoriness, burstiness, firing-rate adaptation, etc.



Generalized linear model

p(nt = 1) = λtdt

λt = f(~k · ~xt +
∑

j

ajrt−j)



GLM likelihood

λt = f(~k · ~xt +
∑

j

ajnt−j)

log p(nt|~xt, ~θ) = −f(~k ·~xt+
∑

j

ajnt−j)+nt log f(~k ·~xt+
∑

j

ajnt−j)

Key points:

• f convex and log-concave =⇒ log-likelihood concave in ~θ.

Easy to optimize, so estimating θ̂ is very tractable.

• Easy to include smoothing priors, as in STRFPak.

• Can also include nonlinear terms easily (Gill et al., 2006;

Ahrens et al., 2008)



Estimated parameters



Model performance



Fast optimal decoding

Maximize log p(n|~x, ~θ) with respect to ~x. Concave optimization;

only O(T ) time (Ahmadian et al., 2008b).
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Optimal stimulus design

Idea: we have full control over the stimuli we present. Can we

choose stimuli ~xt to maximize the informativeness of each trial?

— More quantitatively, optimize I(nt; θ|~xt) with respect to ~xt.

Maximizing I(nt; θ; ~xt) =⇒ minimizing uncertainty about θ.

In general, very hard to do: high-d integration over θ to

compute I(nt; θ|~xt), high-d optimization to select best ~xt.

GLM setting makes this surprisingly tractable

(Lewi et al., 2009).



Infomax vs. randomly-chosen stimuli



Simulated example

— infomax can be an order of magnitude more efficient.



Application to real data: choosing an optimal

stimulus sequence

— stimuli chosen from a fixed pool; greater improvements

expected if we can choose arbitrary stimuli on each trial.



Handling nonstationary parameters

Various sources of nonsystematic nonstationarity:

• Plasticity/adaptation

• Changes in arousal / attentive state

• Changes in health / excitability of preparation

Solution: allow diffusion in parameter θ (Czanner et al., 2008;

Lewi et al., 2009):

~θN+1 = ~θN + ǫ; ǫ ∼ N (0, Q)



Simulation: nonstationary parameters



Conclusion

GLM framework leads to tractable methods for:

• estimating STRFs including spike-history effects

• optimal decoding

• optimal stimulus design

• nonstationarity tracking.

— Strong potential for applications in birdsong system.
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